By convention, we'll always assume that the starting state is state zero. We will denote final states (there may be more than one) by using a double circle for the state (state eight is the final state above).
An NFA always begins with an input string in the starting state (state zero). On each edge coming out of a state there is either , a single character, or a character string. To help unclutter the NFA diagrams, we will allow expressions of the form " xxx | yyy | zzz | " where xxx, yyy, and zzz are , a single character, or a character string. This corresponds to multiple edges from one state to the other with a single item on each edge. In the example above,
is equivalent to
Likewise, we will allow sets of characters, specified by a string of the form x-y, to denote the expression x | x+1 | x+2 | ... | y.
Note that an NFA accepts a string if there is some path from the starting state to an accepting state that exhausts the input string. There may be multiple paths from the starting state to various final states. Furthermore, there may be some particular path from the starting state to a non-accepting state that exhausts the input string. This does not necessarily mean the NFA rejects that string; if there is some other path from the starting state to an accepting state, then the NFA accepts the string. An NFA rejects a string only if there are no paths from the starting state to an accepting state that exhaust the string.
Passing through an accepting state does not cause the NFA to accept a string. You must wind up in a final state and exhaust the input string.
To process an input string with an NFA, begin at the starting state. The edges leading out of the starting state will have a character, a string, or associated with them. If you choose to move from one state to another along an edge with a single character, then remove that character from the input string and move to the new state along the edge traversed by that character. Likewise, if you choose to move along an edge with a character string, remove that character string from the input string and switch to the new state. If there is an edge with the empty string, , then you may elect to move to the new state given by that edge without removing any characters from the input string.
Consider the string "1.25e2" and the NFA in Figure 16.1. From the starting state we can move to state one using the string (there is no leading plus or minus, so is our only option). From state one we can move to state two by matching the "1" in our input string with the set 0-9; this eats the "1" in our input string leaving ".25e2". In state two we move to state three and eat the period from the input string, leaving "25e2". State three loops on itself with numeric input characters, so we eat the "2" and "5" characters at the beginning of our input string and wind up back in state three with a new input string of "e2". The next input character is "e", but there is no edge coming out of state three with an "e" on it; there is, however, an -edge, so we can use that to move to state four. This move does not change the input string. In state four we can move to state five on an "e" character. This eats the "e" and leaves us with an input string of "2". Since this is not a plus or minus character, we have to move from state five to state six on the edge. Movement from state six to state seven eats the last character in our string. Since the string is empty (and, in particular, it does not contain any digits), state seven cannot loop back on itself. We are currently in state seven (which is not a final state) and our input string is exhausted. However, we can move to state eight (the accepting state) since the transition between states seven and eight is an edge. Since we are in a final state and we've exhausted the input string, This NFA accepts the input string.
denote an NFA which recognizes some regular language specified by some regular expression r, s, or t. If a regular expression takes the form rs then the corresponding NFA is
All of the other forms of regular expressions are easily synthesized from these, therefore, converting those other forms of regular expressions to NFAs is a simple two-step process, convert the RE to one of these forms, and then convert this form to the NFA. For example, to convert r+ to an NFA, you would first convert r+ to rr*. This produces the NFA:
The following example converts the regular expression for an integer constant to an NFA. The first step is to create an NFA for the regular expression (+ | - | ). The complete construction becomes
Although we can obviously optimize this to
The next step is to handle the [0-9]+ regular expression; after some minor optimization, this becomes the NFA
Now we simply concatenate the results to produce:
All we need now are starting and final states. The starting state is always the first state of the NFA created by the conversion of the leftmost item in the regular expression. The final state is always the last state of the NFA created by the conversion of the rightmost item in the regular expression. Therefore, the complete regular expression for integer constants (after optimizing out the middle edge above, which serves no purpose) is
AltRST proc near push ax ;The purpose of these two instructions mov ax, di ; is to preserve di in case of failure. call r jc Success mov di, ax ;Restore di (it may be modified by r). call s jc Success mov di, ax ;Restore di (it may be modified by s). call t Success: pop ax ;Restore ax. ret AltRST endp
If the r
matching procedure succeeds, there is no need to try s
and t
. On the other hand, if r
fails, then we need to try s
. Likewise, if r
and s
both fail, we need to try t
. AltRST
will fail only if r
, s
, and t
all fail. This code assumes that es:di
points at the input string to match. On return, es:di
points at the next available character in the string after a match or it points at some arbitrary point if the match fails. This code assumes that r
, s
, and t
all preserve the ax
register, so it preserves a pointer to the current point in the input string in ax
in the event r
or s
fail.
To handle the individual NFA associated with simple regular expressions (i.e., matching or a single character) is not hard at all. Suppose the matching function r matches the regular expression (+ | - | ). The complete procedure for r is
r proc near cmp byte ptr es:[di], '+' je r_matched cmp byte ptr es:[di], '-' jne r_nomatch r_matched: inc di r_nomatch: stc ret r endp
Note that there is no explicit test for . If is one of the alternatives, the function attempts to match one of the other alternatives first. If none of the other alternatives succeed, then the matching function will succeed anyway, although it does not consume any input characters (which is why the above code skips over the inc di
instruction if it does not match "+" or "-"). Therefore, any matching function that has as an alternative will always succeed.
Of course, not all matching functions succeed in every case. Suppose the s
matching function accepts a single decimal digit. the code for s
might be the following:
s proc near cmp byte ptr es:[di], '0' jb s_fails cmp byte ptr es:[di], '9' ja s_fails inc di stc ret s_fails: clc ret s endp
If an NFA takes the form:
Where x
is any arbitrary character or string or , the corresponding assembly code for this procedure would be
ConcatRxS proc near call r jnc CRxS_Fail ;If no r, we won't succeed ; Note, if x=e then simply delete the following three statements. ; If x is a string rather than a single character, put the the additional ; code to match all the characters in the string. cmp byte ptr es:[di], 'x' jne CRxS_Fail inc di call s jnc CRxS_Fail stc ;Success! ret CRxS_Fail: clc ret ConcatRxS endp
If the regular expression is of the form r* and the corresponding NFA is of the form
Then the corresponding 80x86 assembly code can look something like the following:
RStar proc near call r jc RStar stc ret RStar endp
Regular expressions based on the Kleene star always succeed since they allow zero or more occurrences. That is why this code always returns with the carry flag set.
The Kleene Plus operation is only slightly more complex, the corresponding (slightly optimized) assembly code is
RPlus proc near call r jnc RPlus_Fail RPlusLp: call r jc RPlusLp stc ret RPlus_Fail: clc ret RPlus endp
Note how this routine fails if there isn't at least one occurrence of r
.
A major problem with backtracking is that it is potentially inefficient. It is very easy to create a regular expression that, when converted to an NFA and assembly code, generates considerable backtracking on certain input strings. This is further exacerbated by the fact that matching routines, if written as described above, are generally very short; so short, in fact, that the procedure calls and returns make up a significant portion of the execution time. Therefore, pattern matching in this fashion, although easy, can be slower than it has to be.
This is just a taste of how you would convert REs to NFAs to assembly language. We will not go into further detail in this chapter; not because this stuff isn't interesting to know, but because you will rarely use these techniques in a real program. If you need high performance pattern matching you would not use nondeterministic techniques like these. If you want the ease of programming offered by the conversion of an NFA to assembly language, you still would not use this technique. Instead, the UCR Standard Library provides very powerful pattern matching facilities (which exceed the capabilities of NFAs), so you would use those instead; but more on that a little later.