movs
instruction takes four basic forms. Movs
moves bytes, words, or double words, movsb
moves byte strings, movsw
moves word strings, and movsd
moves double word strings (on 80386 and later processors). These four instructions use the following syntax:{REP} MOVSB {REP} MOVSW {REP} MOVSD ;Available only on 80386+ {REP} MOVS Dest, Source
The movsb
(move string, bytes) instruction fetches the byte at address ds:si
, stores it at address es:di
, and then increments or decrements the si
and di
registers by one. If the rep
prefix is present, the CPU checks cx
to see if it contains zero. If not, then it moves the byte from ds:si
to es:di
and decrements the cx
register. This process repeats until cx
becomes zero.
The movsw
(move string, words) instruction fetches the word at address ds:si
, stores it at address es:di
, and then increments or decrements si
and di
by two. If there is a rep
prefix, then the CPU repeats this procedure as many times as specified in cx
.
The movsd
instruction operates in a similar fashion on double words. Incrementing or decrementing si
and di
by four for each data movement.
MASM automatically figures out the size of the movs
instruction by looking at the size of the operands specified. If you've defined the two operands with the byte
(or comparable) directive, then MASM will emit a movsb
instruction. If you've declared the two labels via word
(or comparable), MASM will generate a movws
instruction. If you've declared the two labels with dword
, MASM emits a movsd
instruction. The assembler will also check the segments of the two operands to ensure they match the current assumptions (via the assume
directive) about the es
and ds
registers. You should always use the movsb
, movsw
, and movsd
forms and forget about the movs
form.
Although, in theory, the movs
form appears to be an elegant way to handle the move string instruction, in practice it creates more trouble than it's worth. Furthermore, this form of the move string instruction implies that movs
has explicit operands, when, in fact, the si
and di
registers implicitly specify the operands. For this reason, we'll always use the movsb, movsw,
or movsd
instructions. When used with the rep
prefix, the movsb
instruction will move the number of bytes specified in the cx
register. The following code segment copies 384 bytes from String1
to String2
:
cld lea si, String1 lea di, String2 mov cx, 384 rep movsb . . . String1 byte 384 dup (?) String2 byte 384 dup (?)
This code, of course, assumes that String1
and String2
are in the same segment and both the ds
and es
registers point at this segment. If you substitute movws
for movsb
, then the code above will move 384 words (768 bytes) rather than 384 bytes:
cld lea si, String1 lea di, String2 mov cx, 384 rep movsw . . . String1 word 384 dup (?) String2 word 384 dup (?)
Remember, the cx
register contains the element count, not the byte count. When using the movsw
instruction, the CPU moves the number of words specified in the cx
register.
If you've set the direction flag before executing a movsb/movsw/movsd
instruction, the CPU decrements the si
and di
registers after moving each string element. This means that the si
and di
registers must point at the end of their respective strings before issuing a movsb, movsw, or movsd
instruction. For example,
std lea si, String1+383 lea di, String2+383 mov cx, 384 rep movsb . . . String1 byte 384 dup (?) String2 byte 384 dup (?)
Although there are times when processing a string from tail to head is useful (see the cmps
description in the next section), generally you'll process strings in the forward direction since it's more straightforward to do so. There is one class of string operations where being able to process strings in both directions is absolutely mandatory: processing strings when the source and destination blocks overlap. Consider what happens in the following code:
cld lea si, String1 lea di, String2 mov cx, 384 rep movsb . . . String1 byte ? String2 byte 384 dup (?)
This sequence of instructions treats String1
and String2
as a pair of 384 byte strings. However, the last 383 bytes in the String1
array overlap the first 383 bytes in the String2
array. Let's trace the operation of this code byte by byte.
When the CPU executes the movsb
instruction, it copies the byte at ds:si (String1)
to the byte pointed at by es:di (String2)
. Then it increments si
and di
, decrements cx
by one, and repeats this process. Now the si
register points at String1+1
(which is the address of String2
) and the di
register points at String2+1
. The movsb
instruction copies the byte pointed at by si
to the byte pointed at by di
. However, this is the byte originally copied from location String1
. So the movsb
instruction copies the value originally in location String1
to both locations String2
and String2+1
. Again, the CPU increments si
and di
, decrements cx
, and repeats this operation. Now the movsb
instruction copies the byte from location String1+2
(String2+1
) to location String2+2
. But once again, this is the value that originally appeared in location String1
. Each repetition of the loop copies the next element in String1
to the next available location in the String2
array. Pictorially, it looks something like:
The end result is that X
gets replicated throughout the string. The move instruction copies the source operand into the memory location which will become the source operand for the very next move operation, which causes the replication.
If you really want to move one array into another when they overlap, you should move each element of the source string to the destination string starting at the end of the two strings as shown below:
Setting the direction flag and pointing si
and di
at the end of the strings will allow you to (correctly) move one string to another when the two strings overlap and the source string begins at a lower address than the destination string. If the two strings overlap and the source string begins at a higher address than the destination string, then clear the direction flag and point si
and di
at the beginning of the two strings.
If the two strings do not overlap, then you can use either technique to move the strings around in memory. Generally, operating with the direction flag clear is the easiest, so that makes the most sense in this case.
You shouldn't use the movs
instruction to fill an array with a single byte, word, or double word value. Another string instruction, stos
, is much better suited for this purpose. However, for arrays whose elements are larger than four bytes, you can use the movs
instruction to initialize the entire array to the content of the first element. See the questions for additional information.
cmps
instruction compares two strings. The CPU compares the string referenced by es:di
to the string pointed at by ds:si
. Cx
contains the length of the two strings (when using the rep
prefix). Like the movs
instruction, the MASM assembler allows several different forms of this instruction:{REPE} CMPSB {REPE} CMPSW {REPE} CMPSD ;Available only on 80386+ {REPE} CMPS dest, source {REPNE} CMPSB {REPNE} CMPSW {REPNE} CMPSD ;Available only on 80386+ {REPNE} CMPS dest, source
Like the movs
instruction, the operands present in the operand field of the cmps
instruction determine the size of the operands. You specify the actual operand addresses in the si
and di
registers.
Without a repeat prefix, the cmps
instruction subtracts the value at location es:di
from the value at ds:si
and updates the flags. Other than updating the flags, the CPU doesn't use the difference produced by this subtraction. After comparing the two locations, cmps
increments or decrements the si
and di
registers by one, two, or four (for cmpsb/cmpsw/cmpsd
, respectively). Cmps
increments the si
and di
registers if the direction flag is clear and decrements them otherwise.
Of course, you will not tap the real power of the cmps
instruction using it to compare single bytes or words in memory. This instruction shines when you use it to compare whole strings. With cmps
, you can compare consecutive elements in a string until you find a match or until consecutive elements do not match.
To compare two strings to see if they are equal or not equal, you must compare corresponding elements in a string until they don't match. Consider the following strings:
"String1"
"String1"
The only way to determine that these two strings are equal is to compare each character in the first string to the corresponding character in the second. After all, the second string could have been "String2" which definitely is not equal to "String1". Of course, once you encounter a character in the destination string which doesn't equal the corresponding character in the source string, the comparison can stop. You needn't compare any other characters in the two strings.
The repe
prefix accomplishes this operation. It will compare successive elements in a string as long as they are equal and cx
is greater than zero. We could compare the two strings above using the following 80x86 assembly language code:
; Assume both strings are in the same segment and ES and DS ; both point at this segment. cld lea si, AdrsString1 lea di, AdrsString2 mov cx, 7 repe cmpsb
After the execution of the cmpsb
instruction, you can test the flags using the standard conditional jump instructions. This lets you check for equality, inequality, less than, greater than, etc.
Character strings are usually compared using lexicographical ordering. In lexicographical ordering, the least significant element of a string carries the most weight. This is in direct contrast to standard integer comparisons where the most significant portion of the number carries the most weight. Furthermore, the length of a string affects the comparison only if the two strings are identical up to the length of the shorter string. For example, "Zebra" is less than "Zebras", because it is the shorter of the two strings, however, "Zebra" is greater than "AAAAAAAAAAH!" even though it is shorter. Lexicographical comparisons compare corresponding elements until encountering a character which doesn't match, or until encountering the end of the shorter string. If a pair of corresponding characters do not match, then this algorithm compares the two strings based on that single character. If the two strings match up to the length of the shorter string, we must compare their length. The two strings are equal if and only if their lengths are equal and each corresponding pair of characters in the two strings is identical. Lexicographical ordering is the standard alphabetical ordering you've grown up with.
For character strings, use the cmps
instruction in the following manner:
cmpsb
instruction to compare the strings on a byte by byte basis. Even if the strings contain an even number of characters, you cannot use the cmpsw
instruction. It does not compare strings in lexicographical order.
cx
register must be loaded with the length of the smaller string.
repe
prefix.
ds:si
and es:di
registers must point at the very first character in the two strings you want to compare.
After the execution of the cmps
instruction, if the two strings were equal, their lengths must be compared in order to finish the comparison. The following code compares a couple of character strings:
lea si, source lea di, dest mov cx, lengthSource mov ax, lengthDest cmp cx, ax ja NoSwap xchg ax, cx NoSwap: repe cmpsb jne NotEqual mov ax, lengthSource cmp ax, lengthDest NotEqual:
If you're using bytes to hold the string lengths, you should adjust this code appropriately.
You can also use the cmps
instruction to compare multi-word integer values (that is, extended precision integer values). Because of the amount of setup required for a string comparison, this isn't practical for integer values less than three or four words in length, but for large integer values, it's an excellent way to compare such values. Unlike character strings, we cannot compare integer strings using a lexicographical ordering. When comparing strings, we compare the characters from the least significant byte to the most significant byte. When comparing integers, we must compare the values from the most significant byte (or word/double word) down to the least significant byte, word or double word. So, to compare two eight-word (128-bit) integer values, use the following code on the 80286:
std lea si, SourceInteger+14 lea di, DestInteger+14 mov cx, 8 repe cmpsw
This code compares the integers from their most significant word down to the least significant word. The cmpsw
instruction finishes when the two values are unequal or upon decrementing cx
to zero (implying that the two values are equal). Once again, the flags provide the result of the comparison.
The repne
prefix will instruct the cmps
instruction to compare successive string elements as long as they do not match. The 80x86 flags are of little use after the execution of this instruction. Either the cx
register is zero (in which case the two strings are totally different), or it contains the number of elements compared in the two strings until a match. While this form of the cmps
instruction isn't particularly useful for comparing strings, it is useful for locating the first pair of matching items in a couple of byte or word arrays. In general, though, you'll rarely use the repne
prefix with cmps
.
One last thing to keep in mind with using the cmps
instruction - the value in the cx
register determines the number of elements to process, not the number of bytes. Therefore, when using cmpsw
, cx
specifies the number of words to compare. This, of course, is twice the number of bytes to compare.
cmps
instruction compares two strings against one another. You cannot use it to search for a particular element within a string. For example, you could not use the cmps
instruction to quickly scan for a zero throughout some other string. You can use the scas
(scan string) instruction for this task.movs
and cmps
instructions, the scas
instruction only requires a destination string (es:di
) rather than both a source and destination string. The source operand is the value in the al
(scasb
), ax
(scasw
), or eax
(scasd)
register.scas
instruction, by itself, compares the value in the accumulator (al, ax,
or eax
) against the value pointed at by es:di
and then increments (or decrements) di
by one, two, or four. The CPU sets the flags according to the result of the comparison. While this might be useful on occasion, scas
is a lot more useful when using the repe
and repne
prefixes.repe
prefix (repeat while equal) is present, scas
scans the string searching for an element which does not match the value in the accumulator. When using the repne
prefix (repeat while not equal), scas
scans the string searching for the first string element which is equal to the value in the accumulator.scas
instruction properly. When using the repe
prefix with scas
, the 80x86 scans through the string while the value in the accumulator is equal to the string operand. This is equivalent to searching through the string for the first element which does not match the value in the accumulator. The scas
instruction with repne
scans through the string while the accumulator is not equal to the string operand. Of course, this form searches for the first value in the string which matches the value in the accumulator register. The scas
instruction takes the following forms:{REPE} SCASB {REPE} SCASW {REPE} SCASD ;Available only on 80386+ {REPE} SCAS dest {REPNE} SCASB {REPNE} SCASW {REPNE} SCASD ;Available only on 80386+ {REPNE} SCAS dest
Like the cmps
and movs
instructions, the value in the cx
register specifies the number of elements to process, not bytes, when using a repeat prefix.
stos
instruction stores the value in the accumulator at the location specified by es:di
. After storing the value, the CPU increments or decrements di
depending upon the state of the direction flag. Although the stos
instruction has many uses, its primary use is to initialize arrays and strings to a constant value. For example, if you have a 256-byte array you want to clear out with zeros, use the following code:; Presumably, the ES register already points at the segment ; containing DestString cld lea di, DestString mov cx, 128 ;256 bytes is 128 words. xor ax, ax ;AX := 0 rep stosw
This code writes 128 words rather than 256 bytes because a single stosw
operation is faster than two stosb
operations. On an 80386 or later this code could have written 64 double words to accomplish the same thing even faster.
The stos
instruction takes four forms. They are
{REP} STOSB {REP} STOSW {REP} STOSD {REP} STOS dest
The stosb
instruction stores the value in the al
register into the specified memory location(s), the stosw
instruction stores the ax
register into the specified memory location(s) and the stosd
instruction stores eax
into the specified location(s). The stos
instruction is either an stosb, stosw,
or stosd
instruction depending upon the size of the specified operand.
Keep in mind that the stos
instruction is useful only for initializing a byte, word, or dword array to a constant value. If you need to initialize an array to different values, you cannot use the stos
instruction. You can use movs
in such a situation, see the exercises for additional details.
lods
instruction is unique among the string instructions. You will never use a repeat prefix with this instruction. The lods
instruction copies the byte or word pointed at by ds:si
into the al, ax,
or eax
register, after which it increments or decrements the si
register by one, two, or four. Repeating this instruction via the repeat prefix would serve no purpose whatsoever since the accumulator register will be overwritten each time the lods
instruction repeats. At the end of the repeat operation, the accumulator will contain the last value read from memory.lods
instruction to fetch bytes (lodsb
), words (lodsw
), or double words (lodsd
) from memory for further processing. By using the stos
instruction, you can synthesize powerful string operations.stos
instruction, the lods
instruction takes four forms:{REP} LODSB {REP} LODSW {REP} LODSD ;Available only on 80386+ {REP} LODS dest
As mentioned earlier, you'll rarely, if ever, use the rep
prefixes with these instructions[3]. The 80x86 increments or decrements si
by one, two, or four depending on the direction flag and whether you're using the lodsb
, lodsw
, or lodsd
instruction.
movs
, cmps
, scas
, lods
, and stos
[4]. These certainly aren't the only string operations you'll ever want to use. However, you can use the lods
and stos
instructions to easily generate any particular string operation you like. For example, suppose you wanted a string operation that converts all the upper case characters in a string to lower case. You could use the following code:; Presumably, ES and DS have been set up to point at the same ; segment, the one containing the string to convert. lea si, String2Convert mov di, si mov cx, LengthOfString Convert2Lower: lodsb ;Get next char in str. cmp al, 'A' ;Is it upper case? jb NotUpper cmp al, 'Z' ja NotUpper or al, 20h ;Convert to lower case. NotUpper: stosb ;Store into destination. loop Convert2Lower
Assuming you're willing to waste 256 bytes for a table, this conversion operation can be sped up somewhat using the xlat instruction:
; Presumably, ES and DS have been set up to point at the same ; segment, the one containing the string to be converted. cld lea si, String2Convert mov di, si mov cx, LengthOfString lea bx, ConversionTable Convert2Lower: lodsb ;Get next char in str. xlat ;Convert as appropriate. stosb ;Store into destination. loop Convert2Lower
The conversion table, of course, would contain the index into the table at each location except at offsets 41h..5Ah. At these locations the conversion table would contain the values 61h..7Ah (i.e., at indexes 'A'..'Z' the table would contain the codes for 'a'..'z').
Since the lods
and stos
instructions use the accumulator as an intermediary, you can use any accumulator operation to quickly manipulate string elements.
prefixes, and repeat prefixes. In fact, you can specify all three types of instruction prefixes should you so desire. However, due to a bug in the earlier 80x86 chips (pre-80386), you should never use more than a single prefix (repeat, lock, or segment override) on a string instruction unless your code will only run on later processors; a likely event these days. If you absolutely must use two or more prefixes and need to run on an earlier processor, make sure you turn off the interrupts while executing the string instruction.