

Lab 4-119

Memory Layout & Access Lab Manual, Chapter Four

To write the shortest and fastest possible assembly language programs you need to understand how the CPU refer-
ences data in memory. The Intel 80x86 processor family provides a wide variety of memory addressing modes that allow
efficient access to memory. Unless you master these addressing modes, you will not be able to write the most efficient
programs.

The 80386 and later processors support an extended set of memory addressing modes. For those working on ‘386
(or greater) processors, the task is both simpler and more complex. On the one hand, the greater variety of addressing
modes opens even more opportunity for optimization. On the other hand, the additional modes complicate the task of
selecting the most appropriate mode.

In this laboratory you will experiment with the PC’s memory and study the various 80x86 addressing modes. You
will also explore various high level language data types and their implementation in assembly language. To support
these experiments, you will learn how to use the Microsoft CodeView



 debugger, the 80x86 version of SIM886. Finally,
you will begin writing real assembly language programs, assembling and linking them with the MASM 6.x assembler.

4.1 Debuggers and CodeView



The SIM886 program is an example of a very simple debugging program. It should come as no surprise that there
are several debugger programs available for the 80x86 as well. In this chapter you will learn the basic operation of the
CodeView debugger. CodeView is a professional product with many different options and features. This short chapter
cannot begin to describe all the possible ways to use the CodeView debugger. However, you will learn how to use some
of the more common CodeView commands and debugging techniques.

One major drawback to describing a system like CodeView is that Microsoft constantly updates the CodeView prod-
uct. These updates create subtle changes in the appearance of several screen images and the operation of various com-
mands. One of the main reasons for putting the discussion of CodeView in this lab manual is to allow the timely update
of this material on the CodeView debugger. As new versions of CodeView appear, updates to this chapter can reflect
those changes. However, it’s quite possible that you’re using an older version of CodeView than the one described in this
chapter, or this chapter describes an older version of CodeView than the one you’re using. Well, don’t let this concern
you. The basic principles are the same and you should have no problem adjusting for version differences.

4.1.1 A Quick Look at CodeView

To run CodeView, simply type the following command at the DOS command line prompt:

c:> CV

program.exe œ

Program.exe

 represents the name of the program you wish to debug (the “.exe” suffix is optional). CodeView requires
that you specify a “.EXE” or “.COM” program name. If you do not supply an executable filename, CodeView will ask you
to pick a file when you run it.

CodeView requires an executable program name as the command line parameter. Since you probably haven’t writ-
ten an executable assembly language program yet, you haven’t got a program to supply to CodeView. To alleviate this
problem, use the SHELL.EXE program found on the diskette accompanying this lab manual. To run CodeView using
SHELL.EXE just use the command “CV SHELL.EXE”. This will bring up a screen which looks something like the following:

Thi d t t d ith F M k 4 0 2

Lab Ch04

Lab 4-120

There are four sections to the screen above: the

menu bar

 on the first line, the

source1

 window, the

command

 win-
dow, and the help/ status line. Note that CodeView has many windows other than the two above. CodeView remembers
which windows were open the last time it was run, so it might come up displaying different windows than those above.
At first, the Command window is the active window. However, you can easily switch between windows by pressing the
§

 key on the keyboard.

The windows are totally configurable. The Windows

menu lets you select which windows appear on the screen. As
with most Microsoft windowing products, you select items on the menu bar by holding down the Å

 key and pressing
the first letter of the menu you wish to open. For example, pressing ÅW

 opens up the Windows menu:

4.1 What keystrokes would you use to bring up the “File” menu?

4.2 How do you switch between the windows in CodeView?

Memory Layout and Access

Lab 4-121

4.1.1.1 The Source Window

The Source1 and Source2

items let you open additional source windows. This lets you view,
simultaneously, several different sections of the current program you’re debugging. Source win-
dows are useful for source level debugging. This chapter does not cover source level debugging.
We will return to this feature in a later chapter.

4.1.1.2 The Memory Window

The Memory item lets you open a memory window. The memory windows lets you display
and modify values in memory. By default, this window displays the variables in your data seg-
ment, though you can easily display any values in memory by typing their address.

The following is an example of a memory display:

The values on the left side of the screen are the segmented memory addresses. The columns
of hexadecimal values in the middle of the screen represent the values for 16 bytes starting at the
specified address. Finally, the characters on the right hand side of the screen represent the ASCII
characters for each of the 16 bytes at the specified addresses. Note that CodeView displays a
period for those byte values that are not printable ASCII characters.

When you first bring up the memory window, it typically begins displaying data at offset
zero in your data segment. There are a coup.le of ways to display different memory locations.
First, you can use the “

and ”

keys to scroll through memory

1

. Another option is to move
the cursor over a segment or offset portion of an address and type in a new value. As you type
each digit, CodeView automatically displays the data at the new address.

If you want to modify values in memory, simply move the cursor over the top of the desired
byte’s value and type a new hexadecimal value. CodeView automatically updates the corre-
sponding byte in memory. This is quite a bit easier than SIM886’s

Enter

 command!

CodeView lets you open multiple Memory windows at one time. Each time you select Mem-
ory from the View memory, CodeView will open up another Memory window. With multiple

1. Mouse users can also move the thumb control on the scroll bar to achieve this same result.

Lab Ch04

Lab 4-122

memory windows open you can compare the values at several non-contiguous memory locations on the screen at one
time. Remember, if you want to switch between the memory windows, press the §

 key.

4.3 How would you tell CodeView to display the memory values starting at location 1000:0 in
the memory window?

4.4 How would you modify the byte at location 1000:0 to store a zero there?

Pressing ß£

 toggles the data display mode between displaying hexadecimal bytes, ASCII characters, words,
double words, integers (signed), floating point values, and other data types. This is useful when you need to view mem-
ory using different data types. You only have the option of displaying the contents of the entire window as a single data
type; however, you can open multiple memory windows and display a different data type in each one.

4.1.1.3 The Register Window

The Register item in the Windows menu displays or hides the 80x86 registers window. This windows displays the
current 80x86 register values:

To change the value of a register, activate the register window (using §

, if it is not already selected) and move the
cursor over the value you wish to change. Type a new value over the desired register’s existing value. Note that FL stands
for

flags

. You can change the values of the flags in the flags register by entering a new value after the FL= entry. Another
way to change the flags is to move the cursor over one of the flag entries at the bottom of the register window and press
an alphabetic key (e.g., “A”) on the keyboard. This will toggle the specified flag. The flag values are (0/1): over-
flow=(OV/NV), direction=(DN/UP), interrupt=(DI/EI), sign=(PL/NG), zero=(NZ/ZR), auxiliary carry=(NA/AC), par-
ity=(PO/PE), carry=(NC/CY).

Memory Layout and Access

Lab 4-123

Note that pressing the ™

 key toggles the display of the registers window. This feature is
quite useful when debugging programs. The registers window eats up about 20% of the display
and tends to obscure other windows. However, you can quickly recall the registers window, or
make it disappear, by simply pressing ™

.

4.5 Describe how to modify a register value.

4.1.1.4 The Command Window

The

Command

 window lets you type SIM886 style commands into CodeView. Although
almost every command available in the command window is available elsewhere, many opera-
tions are easier done in the command window. Furthermore, you can generally execute a
sequence of completely different commands in the command window faster than switching
between the various other windows in CodeView. The operation of the command window will
be the subject of the next section in this chapter.

4.1.1.5 The Output Menu Item

Selecting

View Output

 from the

Windows

 menu (or pressing the ¢

 key) toggles the dis-
play between the CodeView display and the current program output. While your program is
actually running, CodeView normally displays the program’s output. Once the program turns
control over to CodeView, however, the debugging windows appear obscuring your output. If
you need to take a quick peek at the program’s output while in CodeView, the ¢

 key will do
the job.

4.1.2 The CodeView Command Window

CodeView is actually two debuggers in one. On the one hand, it is a modern window-based
debugging system with a nice mouse-based user interface. On the other hand, it can behave like
a traditional command-line based debugger (e.g., SIM886). The command

window provides the
key to this split personality. If you activate the command window, you can enter debugger com-
mands from the keyboard. The following are some of the more common CodeView commands
you will use:

A

address

Assemble
BC

bp_number

Breakpoint Clear
BD

bp_number

Breakpoint Disable
BE

bp_number

Breakpoint Enable
BL Breakpoint List
BP

address

Breakpoint Set
D

range

Dump Memory
E Animate execution
E

x

Address

Enter Commands (x= “ “, b, w, d, etc.)
G {

address

} Go (address is optional)
H

command

Help
I

port

 Input data from I/O port
L Restart program from beginning

4.1 Åf

4.2 Press §

Lab Ch04

Lab 4-124

MC

range address

Compare two blocks of memory
MF

range data_value(s)

Fill Memory with specified value(s)
MM

range address

Copy a block of memory
MS

range data_value(s)

Search memory range for set of values
N

Value

10

Set the default radix

O

port value

Output value to an output port
P Program Step
Q Quit
R Register
R

xx

value

Set register

xx

 to

value

T Trace
U

address

Unassemble statements at

address

In this chapter we will mainly consider those commands that manipulate memory. Execution commands like the
breakpoint , trace, and go commands appear in a later chapter. Of course, it wouldn’t hurt for you to learn some of the
other commands, you may find some of them to be useful.

4.1.2.1 The Radix Command (N)

The first command window command you must learn is the RADIX (base selection) command. By default, Code-
View works in decimal (base 10). This is very inconvenient for assembly language programmers so you should always
execute the radix command upon entering CodeView and set the base to hexadecimal. To do this, use the command

N 16

4.1.2.2 The Assemble Command

The CodeView command window

Assemble

 command works in a fashion not unlike the SIM886 assemble com-
mand. The command uses the syntax:

A

address

 œ

Address

 is the starting address of the machine instructions. This is either a full segmented address (

ssss:oooo

,

ssss

 is the
segment,

oooo

 is the offset) or a simple offset value of the form

oooo

. If you supply only an offset, CodeView uses CS’
current value as the segment address.

After you press œ

, CodeView will prompt you to enter a sequence of machine instructions. Pressing œ by
itself terminates the entry of assembly language instructions. The following is an example from inside CodeView:

Memory Layout and Access

Lab 4-125

(This code uses a few 80x86 instructions we’ve haven’t discussed yet. The next chapter will dis-
cuss them.)

The Assemble command is one of the few commands available only in the command win-
dow. Apparently, Microsoft does not expect programmers to enter assembly language code into
memory using CodeView. This is not an unreasonable assumption since CodeView is a a high
level language source level debugger.

In general, the CodeView Assemble command is useful for quick patches to a program, but
it is no substitute for MASM 6.x. Any changes you make to your program with the assemble com-
mand will not appear in your source file. It’s very easy to correct a bug in CodeView and forget
to make the change to your original source file and then wonder why the bug is still in your
code.

4.6 Suppose you’ve just entered the code above and you want to see the
hexadecimal opcodes generated by the assembler for these instruc-
tions. Describe how you could do this:

4.1.2.3 The Compare Memory Command

The Memory Compare command will compare the bytes in one block of memory against
the bytes in a second block of memory. It will report any differences between the two ranges of
bytes. This is useful, for example, to see if a program has initialized two arrays in an identical
fashion or to compare two long strings. The compare command takes the following forms:

MC start_address end_address second_block_addressœ
MC start_address L length_of_block second_block_addressœ

The first form compares the bytes from memory locations start_address through end_address
with the data starting at location second_block_address. The second form lets you specify the
size of the blocks rather than specify the ending address of the first block. If CodeView detects
any differences in the two ranges of bytes, it displays those differences and their addresses. The
following are all legal compare commands:

MC 8000:0 8000:100 9000:80 œ
MC 8000:100 L 20 9000:0 œ
MC 0 100 200 œ

The first command above compares the block of bytes from locations 8000:0 through 8000:100
against a similarly sized block starting at address 9000:80 (i.e., 9000:80..180).

The second command above demonstrates the use of the “L” option which specifies a
length rather than an ending address. In this example, CodeView will compare the values in the
range 8000:0..8000:1F (20h/32 bytes) against the data starting at address 9000:0.

The third example above shows that you needn’t supply a full segmented address for the
starting_address and second_block_address values. By default, CodeView uses the data segment
(DS:) if you do not supply a segment portion of the address. Note, however, that if you supply a
starting and ending address, they must both have the same segment value; you must supply the
same segment address to both or you must let both addresses default to DS’ value.

If the two blocks are equal, CodeView immediately prompts you for another command
without printing anything to the command window. If there are differences between the two
blocks of bytes, however, CodeView lists those differences (and their addresses) in the com-
mand window:

4.3 Type “1000” over the
segment portion of an
address in the memory win-
dow, then type “0” over the
offset portion of an address
in the memory window.
CodeView will now display
the contents of memory start-
ing at address 1000:0.

4.4 Move the cursor over
the data byte after the 1000:0
address and type the new
value over the old one.

4.5 Move the cursor over
the register value you want
to change and type the new
value.

Lab Ch04

Lab 4-126

In the example above, memory locations 8000:0 through 8000:200 were first initialized to zero. Then locations
8000:10 through 8000:1E were set to 1, 2, 3, ..., 0Fh. Finally, the Memory Compare command compared the bytes in the
range 8000:0…8000:FF with the block of bytes starting at address 8000:100. Since locations 8000:10…8000:1E were dif-
ferent from the bytes at locations 8000:110…8000:11E, CodeView printed their addresses and differences.

4.7 Give the complete command to compare the 1000h bytes beginning at address F00:100
against the block of 1000h bytes at address 2000:0

4.8 Give the command to compare the bytes at address DS:100h through DS:1FFh with the
bytes at address DS:200h

4.1.2.4 The Dump Memory Command

The Dump command lets you display the values of selected memory cells. The Memory window in CodeView also
lets you view (and modify) memory. However, the Dump command is sometimes more convenient, especially when
looking at small blocks of memory.

The Dump command takes several forms, depending on the type of data you want to display on the screen. This
command typically takes one of the forms:

D starting_address ending_address œ
D starting_address L length œ

By default, the dump command displays 16 hexadecimal and ASCII byte values per line (just like the Memory win-
dow).

There are several additional forms of the Dump command that let you specify the display format for the data. How-
ever, the exact format seems to change with every version of CodeView. For example, in CodeView 4.10, you would use
commands like the following:

DA address_range Dump ASCII characters
DB address_range Dump hex bytes/ASCII (default)
DI address_range Dump integer words
DIU address_range Dump unsigned integer words
DIX address_range Dump 16-bit values in hex

Memory Layout and Access

Lab 4-127

DL address_range Dump 32-bit integers
DLU address_range Dump 32-bit unsigned integers
DLX address_range Dump 32-bit values in hex
DR address_range Dump 32-bit real values
DRL address_range Dump 64-bit real values
DRT address_range Dump 80-bit real values

You should probably check the help associated with your version of CodeView to verify the
exact format of the memory dump commands. Note that some versions of CodeView allow you
to use MDxx for the memory dump command.

4.9 Which command above displays REAL4 variables?

4.10 Which command above displays REAL10 variables?

4.11 Which command above displays a string?

Once you execute one of the above commands, the “D” command name displays the data in the
new format. The “DB” command reverts back to byte/ASCII display. The following figure pro-
vides an example of these commands:

If you enter a dump command without an address, CodeView will display the data immedi-
ately following the last dump command. This is sometimes useful when viewing memory.

4.1.2.5 The Enter Command

The CodeView Memory windows lets you easily display and modify the contents of mem-
ory. From the command window it takes two different commands to accomplish these tasks:
Dump to display memory data and Enter to modify memory data. For most memory modification
tasks, you’ll find the memory windows easier to use. However, the CodeView Enter command
handles a few tasks easier than the Memory window.

4.6 Open a memory win-
dow and set the display
address to the same address
as your code.

Lab Ch04

Lab 4-128

Like the Dump command, the Enter command lets you enter data in several different formats. The commands to
accomplish this are

EA- Enter data in ASCII format
EB- Enter byte data in hexadecimal format
ED- Enter double word data in hexadecimal format
EI- Enter 16-bit integer data in (signed) decimal format
EIU- Enter 16-bit integer data in (unsigned) decimal format.
EIX- Enter 16-bit integer data in hexadecimal format.
EL- Enter 32-bit integer data in (signed) decimal format
ELU- Enter 32-bit integer data in (unsigned) decimal format.
ELX- Enter 32-bit integer data in hexadecimal format.
ER- Enter 32-bit floating point data
ERL- Enter 64-bit floating pont data
ERT- Enter 80-bit floating point data

Like the Dump command, the syntax for this command changes regularly with different versions of CodeView. Be sure to
use CodeView’s help facility if these commands don’t seem to work. MExx is a synonym for Exx in CodeView.

Enter commands take two possible forms:

Ex starting_address œ
Ex starting_address list_of_values œ

The first form above is the interactive Enter command. Upon pressing the key, Codeview will display the starting
address and the data at that address, then prompt you to enter a new value for that location. Type the new value fol-
lowed by ˙ and CodeView will prompt you for the value for the next location; typing ˙ by itself skips over the
current location; typing œ or a value terminated with œ terminates the interactive Enter mode. Note that the EA
command does not let you enter ASCII values in the interactive mode. It behaves exactly like the EB command during
data entry.

The second form of the Enter command lets you enter a sequence of values into memory a single entry. With this
form of the Enter command, you simply follow the starting address with the list of values you want to store at that
address. CodeView will automatically store each value into successive memory locations beginning at the starting
address. You can enter ASCII data using this form of Enter by enclosing the characters in quotes. The following figure
demonstrates the Enter command:

4.12 Besides using the Enter command, describe another method you can use to modify the con-
tents of memory

Memory Layout and Access

Lab 4-129

There are a couple of points concerning the Enter command of which you should be aware.
First of all, you cannot use “E” as a command by itself . Unlike the Dump command, this does not
mean “begin entering data after the last address.” Instead, this is a totally separate command
(Animate). The other thing to note is that the current display mode (ASCII, byte, word, double
word, etc.) and the current entry mode are not independent. Changing the default display mode
to word also changes the entry mode to word, and vice versa.

The command window Enter command is particularly useful for entering small lists of val-
ues or ASCII strings, especially at different points throughout memory. When dealing with values
in a small area of memory, working in the Memory window is probably easier.

4.13 Suppose the string starting at address 1000:108 was misspelled
“Attacked” rather than “Attached”. Describe how to fix this with the
Enter command

4.14 How could you enter the REAL8 value “1.25” into memory?

4.15 If you use an “EW” command to enter a two-byte value, what data type
would the “D” command display if used afterwards?

4.1.2.6 The Fill Memory Command

The Enter command and the Memory window let you easily change the value of individual
memory locations, or set a range of memory locations to several different values. If you want to
clear an array or otherwise initialize a block of memory locations so that they all contain the
same values, the Memory Fill command provides a better alternative.

The Memory Fill command uses the following syntax:

MF starting_address ending_address values œ
MF starting_address L block_length values œ

The Memory Fill command fills memory locations starting_address through ending_address
with the byte values specified in the values list. The second form above lets you specify the
block length rather than the ending address.

The values list can be a single value or a list of values. If values is a single byte value, then
the Memory Fill command initializes all the bytes of the memory block with that value. If values
is a list of bytes, the Fill command repeats that sequence of bytes over and over again in mem-
ory. For example, the following command stores 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5... to the 256 bytes
starting at location 8000:0

F 8000:0 L 100 1 2 3 4 5

Unfortunately, the Fill command works only with byte (or ASCII string) data. However, you can
simulate word, doubleword, etc., memory fills breaking up those other values into their compo-
nent bytes. Don’t forget, though, that the L.O. byte always comes first.

4.16 Suppose you have an array of 256 double words starting at address
1000:200. How could you initialize each element of this array to zero
using the Fill command?

4.7 MC F00:100 L 1000h
2000:0

4.8 MC DS:100 DS:1FF
DS:200

4.9 DR

4.10 DRT

4.11 DA (or DB)

Lab Ch04

Lab 4-130

4.17 What does the (legal) Fill command do?

F 1000:0 L 100 “Hi There”

4.1.2.7 The Move Memory Command

This Command window operation copies data from one block of memory to another. This lets you copy the data
from one array to another, move code around in memory, reinitialize a group of variables from a saved memory block,
and so on. The syntax for the Memory Move command is as follows:

MM starting_address ending_address destination_address œ
MM starting_address L block_length destination_address œ

If the source and destination blocks overlap, CodeView detects this and handles the memory move operation correctly.

4.18 Suppose you have a short 132h byte routine sitting at location FF0:124 that you would like
to move to location 8000:0. What command will do this?

4.19 What command could you use to verify that the 132h bytes you copied from location
FF0:124 properly appear at address 8000:0?

4.1.2.8 The Input Command

The Input command lets you read data from one of the 80x86’s 65,536 different input ports. The syntax for this com-
mand is

I port_address œ

where port_address is a 16-bit value denoting the I/O port address to read. The input command reads the byte at that
port and displays its value.

Note that it is not a wise idea to use this command with an arbitrary address. Certain devices activate some functions
whenever you read one of their I/O ports. By reading a port you may cause the device to lose data or otherwise disturb
that device.

Note that this command only reads a single byte from the specified port. If you want to read a word or double-word
from a given input port you will need to execute two successive Input operations at the desired port address and the next
port address.

This command appears to be broken in certain versions of CodeView (e.g., 4.01).

4.20 The LPT1: status input port is at I/O address 3F9h. What is the command to display the byte
at this port?

4.1.2.9 The Output Command

The Output command is complementary to the Input command. This command lets you output a data value to a
port. It uses the syntax:

Memory Layout and Access

Lab 4-131

O port_address output_value œ

Output_value is a single byte value that CodeView will write to the output port given by
port_address.

Note that CodeView also uses the “O” command to set options. If it does not recognize a
valid port address as the first operand it will think this is an Option command. If the Output com-
mand doesn’t seem to be working properly, you’ve probably switched out of the assembly lan-
guage mode (CodeView supports BASIC, Pascal, C, and FORTRAN in addition to assembly
language) and the port address you’re entering isn’t a valid numeric value in the new mode. Be
sure to use the N 16 command to set the default radix to hexadecimal before using this com-
mand!

4.21 Output port 3F8 is where you store data being output to a printer. What
is the command to store the character “A” (ASCII code 41h) to this port?

4.22 Reading this port returns the last value sent to the printer. What com-
mand would you use to read the LPT1: data port?

4.1.2.10 The Quit Command

Pressing Q (for Quit) terminates the current debugging session and returns control to MS-
DOS. You can also quit CodeView by selecting the Exit item from the File menu.

4.1.2.11 The Register Command

The CodeView Register command lets you view and change the values of the registers. To
view the current values of the 80x86 registers you would use the following command:

R œ

This command displays the registers and disassembles the instruction at address CS:IP.

You can also change the value of a specific register using a command of the form:

Rxx œ
-or-

Rxx = value

where xx represents one of the 80x86’s register names: AX, BX, CX, DX, SI, DI, BP, SP, CS, DS,
ES, SS, IP, or FL. The first version (“Rxx œ”) displays the specified register and then
prompts you to enter a new value. The second form of this command above immediately sets the
specified register to the given value.

4.23 There is another way to view the 80x86’s registers. What is it?

4.12 Use the memory win-
dow

4.13 EA 1000:10D “h”

4.14 ERL address 1.25

4.15 It will display word val-
ues.

4.16
MF 1000:200 L 400 0
or
MF 1000:200 1000:5ff 0

Lab Ch04

Lab 4-132

The following figure demonstrates the operation of these register commands:

4.1.2.12 The Unassemble Command

The Command window Unassemble command works just like it’s SIM886 counterpart. It will disassemble a
sequence of instructions at an address you specify, converting the binary machine codes into (barely) readable machine
instructions. The basic command uses the following syntax:

U address

Note that you must have a source window open for this instruction to operate properly!

In general, the Unassemble command is of little use because the Source window lets you view your program at the
source level (rather than at the disassembled machine language level). However, the Unassemble command is great for
disassembling BIOS, DOS, TSRs, and other code in memory.

4.1.3 CodeView Function Keys

CodeView uses the function keys on the PC’s keyboard for often-executed operations. The following table gives a
brief description of the use of each function key.

Table 10: Function Key Usage in CodeView

Function
Key

Alone ß Ç Å

¡ Help Help contents Next Help Prev Help

™ Register Win-
dow

£ Source Window
Mode

Memory Win-
dow Mode

¢ Output Screen Close Window

Memory Layout and Access

Lab 4-133

The £ function key deserves special mention. Pressing this key toggles the source mode
between machine language (actually, disassembled machine language), mixed, and source. In
source mode (assuming you’ve assembled your code with the proper options) the source win-
dow displays your actual source code. In mixed mode, CodeView displays a line of source code
followed by the machine code generated for that line of source code. This mode is primarily for
high level language users, but it does have some utility for assembly language users as you’ll see
when you study macros. In machine mode, CodeView ignores your source code and simply dis-
assembles the binary opcodes in memory. This mode is useful if you suspect a bug in MASM
(they do exist) and you’re not sure than MASM is assembling your code properly.

4.1.4 Some Comments on CodeView Addresses

The examples given for addresses in the previous sections are a little misleading. You could
easily get the impression that you have to enter an address in hexadecimal form, i.e., ssss:oooo or
oooo. Actually, you can specify memory addresses in many different ways. For example, if you
have a variable in your assembly language program named MyVar, you could use a command
like

D Myvar

to display the value of this variable2. You do not need to know the address, nor even the seg-
ment of that variable. Another way to specify an address is via the 80x86 register set. For exam-
ple, if ES:BX points at the block of memory you want to display, you could use the following
command to display your data:

D ES:BX

CodeView will use the current values in the ES and BX registers as the address of the block of
memory to display. There is nothing magical about the use of the registers. You can use them
just like any other address component. In the example above, ES held the segment value and BX
held the offset— very typical for an 80x86 assembly language program. However, CodeView
does not require you to use legal 80x86 combinations. For example, you could dump the bytes
at address CX:AX using the dump command

D CX:AX

The use of 80x86 registers is not limited to specifying source addresses. You can specify
destination addresses and even lengths using the registers:

D CX:AX L BX ES:DI

2. This requires that you assemble your program in a very special way, but we’re getting to that.

∞ Run

§ Switch Window Prev Window

¶ Execute to cur-
sor

• Trace Prev History Size window

ª Breakpoint

º Step instrs, run
calls.

Next History Maximize Win-
dow

Table 10: Function Key Usage in CodeView

Function
Key

Alone ß Ç Å

4.17 Fills 256 (100h) bytes
with the characters “Hi
There” repeated over and
over starting at address
1000:0

4.18 MM FF0:124 L 132
8000:0

4.19 MC FF0:124 L 132
8000:0

4.20 I 3F9

4.21 O 3F8 “A”
or O 3F8 41

4.22 I 3F8

4.23 Use the CodeView Reg-
ister window.

Lab Ch04

Lab 4-134

Of course, you can mix and match the use of registers and numeric addresses in the same command with no problem:

D CX:AX L 100 8000:0

You can also use complex arithmetic expressions to specify an address in memory. In particular, you can use the
addition operator to compute the sum of various components of an address. This works out really neat when you need
to simulate 80x86 addressing modes. For example, if you want to see which byte is at address 1000[bx], you could use the
command:

D BX+1000 L 1

To simulate the [BX][SI] addressing mode and look at the word at that address you could use the command:

DIX BX+SI L 1

The examples presented in this section all use the Dump command, but you can use this technique with any of the
CodeView commands. For more information concerning what constitutes valid CodeView address, as well as a full
explanation of allowable expression forms, please consult the CodeView on-line help system.

4.24 What CodeView command will let you see the value that would be loaded into AX by the
instruction “MOV AX, CS:4[bx][si]”?

4.25 What command would you use to simulate the instruction “MOV word ptr ES:2[DI], 0” from
inside CodeView?

4.1.5 A Wrap on CodeView

We’re not through discussing CodeView by any means. In particular, we’ve not discussed the execution, single step-
ping, and breakpoint commands which are crucial for debugging programs. We will return to these subjects in later
chapters. Nonetheless, we’ve covered a considerable amount of material, certainly enough to deal with most of the
experiments in this laboratory exercise. As we need those other commands, this manual will introduce them.

Of course, there are two additional sources of information on CodeView available to you— the section on Code-
View in the “Microsoft Macro Assembler Programmer’s Guide” and the on-line help available inside CodeView. In partic-
ular, the on-line help is quite useful for figuring out how a specific command works inside CodeView.

4.2 Segmented Addressing on the 80x86

The 80x86 processor family uses a powerful memory management scheme called segmented addressing. Segmented
addresses consist of two components: a segment and an offset. Segmented addressing lets you organize your program
into logically distinct components. Rather than placing all your variables and code into one spot, you can group related
variables and code sections into different segments. This will make your programs easier to understand and maintain.

The only problem is that the 80x86 CPUs address memory as a linear array of bytes and they must convert seg-
ment:offset logical addresses into single-dimension linear addresses. When operating in real address mode, the 80x86
translates logical addresses into physical addresses by multiplying the segment value by 16 and then adding in the offset.

Memory Layout and Access

Lab 4-135

Some examples:

When using hexadecimal numbers the logical to physical address computation is almost
trivial. All you need to do is stick a zero on the end of the segment value and add the result to the
offset.

4.26 Convert 800:8000 to a physical address:

4.27 Convert 1234:5678 to a physical address:

4.28 Convert ABCD:1234 to a physical address:

An 80x86 program never really sees a physical address. Physical addresses are quantities
appearing on the address bus. A program never manipulates them. Why then should you worry
about physical addresses? To understand, take a look at the table again. Note that the first four
addresses, though they are obviously different, all map to the same physical address. Whenever
you store a data value into memory it winds up at some physical address. Two different vari-
ables, even if they have different logical addresses, are one and the same if they have the same
physical address. For example, if variable I appears in memory at location 1000:10 and variable J
appears in memory at location 1001:0, storing a value into I will wipe out J’s value and vice versa
since they are both located at the same physical address. Remember, it’s the physical address
where the CPU actually stores the data. That’s why you need to know how to convert logical to
physical addresses, so you can avoid overwriting the value of one variable with another simply
because their logical addresses happen to map to the same physical address.

To see if one logical address is an alias of another (that is, they share the same memory
location(s)), simply convert both logical addresses to physical addresses. If their physical
addresses are the same, they are indeed aliases of one another.

4.29 Several of the following addresses are aliases of one another. Separate
them into groups of aliases: 2000:2000 1000:8000 3800:0 2080:1800
2200:0 3000:8000 1FFF:2010 1800:a000 2F00:9000

Table 11: Logical To Physical Address Translation

Logical Address Computation Physical Address

1000:100 10000+100 10100

1008:80 10080+80 10100

1010:0 10100+0 10100

100C:40 100C0+40 10100

10:8000 100+8000 8100

8000:10 80000+10 80010

Lab Ch04

Lab 4-136

4.3 Normalized Addresses on the 80x86

The possibility of aliases is only one reason why you have to worry about physical addresses. Comparing pointers is
another big problem facing software designers on the 80x86. When comparing pointers it would be nice if they were
equal if they pointed at the same object. When comparing segmented addresses it’s quite possible to have two pointers
which are not equal (that is, their bit patterns are not the same) yet they point at the same physical address. When the
necessity to compare pointers arises, most programmers use a special canonical, or normalized, form for addresses. To
normalize a logical address is very easy— just convert it to its physical address then stick a colon between the fourth and
fifth digits of the 20-bit physical address:

As you can see, if your pointers contain normalized addresses they will contain the same bit patterns if they point at the
same object.

4.30 Convert 8203:3583 to a normalized address:

4.4 Memory Addressing Modes on the 80x86

The 80x86 family supports 17 different memory addressing modes which can be easily broken down into about five
different groups: displacement-only, register indirect, indexed, based indexed, and based indexed plus displacement.

The easiest addressing mode to understand is the displacement only addressing mode. Instructions using this
addressing mode consist of an opcode (one or more bytes) followed by a 16-bit constant. This constant is the offset into
the data segment for that instruction3.

Examples:

Assume I is at offset 110h and J is at offset 112h in the data segment. Assume that K is at offset 100h in the extra segment.

mov ax, DS:I ;Fetches AX from memory location DS:110h
mov DS:J, ax ;Stores AX into memory location DS:112h
mov bx, ES:K ;Loads BX from location ES:100h

4.31 Assume that DS contains 1000h and ES contains 2000h. What physical addresses do the
three instructions above reference?

3. Unless explicitly overridden, the displacement addressing mode always provides an offset into the Data Segment.

Table 12: Normalizing an Address

Logical Address Physical Address Normalized Address

1000:100 10100 1010:0

1008:80 10100 1010:0

1010:0 10100 1010:0

100C:40 10100 1010:0

10:8000 8100 810:0

8000:10 80010 8001:0

Memory Layout and Access

Lab 4-137

4.32 What would the normalized versions of those addresses be?

The displacement addressing mode is very easy to understand; computing the effective
address of the operand is trivial — the effective address is given to you. The only catch is that
most of the time that you’re using this addressing mode you’re using symbolic names like “I” and
“J” so you won’t actually know the displacement (the assembler determines this value for you).
Of course, you don’t really need to know the displacement value in most cases, so it hardly mat-
ters.

Next up on the complexity scale is the register indirect addressing mode. The register indi-
rect addressing modes include [BX], [BP], [SI], and [DI]4. Instructions using these addressing
modes do not encode an offset into the instruction. Instead, they consist of an opcode byte and a
MOD-REG-R/M byte. These addressing modes compute their effective addresses by using the
values in the specified register. By default, the [BX], [DI], and [SI] addressing modes use the data
segment; the [BP] addressing mode uses the stack segment.

Examples:

Assume BX=100h, SI=200h, DI=300h, BP=400h; DS=1000h, ES=2000h, and SS=3000h

mov ax, [bx] ;Loads ax from location DS:100h
mov bx, [si] ;Loads bx from location DS:200h
mov ss:[di], bx ;Stores bx to location SS:300h
mov al, es:[bp] ;Loads al from location ES:400h

4.33 What physical addresses do each of the above instructions access?

4.34 Assuming there were no segment override prefixes on the last two
instructions above, which segment would each of the above instruc-
tions reference by default?

The indexed addressing mode is the next level of complexity. It is a combination of the dis-
placement-only and register indirect addressing modes. The instruction encoding typically con-
sists of an opcode byte, a MOD-REG-R/M byte, and a one or two byte constant displacement.
The CPU computes the effective address by adding the (two’s complement signed) displacement
value with the value of the register. Possible addressing modes include disp[bx], disp[di], disp[si],
and disp[bp]. MASM also allows you to enter these addressing modes as [bx+disp], [di+disp],
[si+disp], and [bp+disp].

The disp[bp]/[bp+disp] addressing modes use the stack segment by default (if you don’t
supply a segment override); the other addressing modes use the data segment by default. The
offset into the given segment is simply the sum of the register and the displacement. Displace-
ments in the range -128…+127 require only one byte to encode in the instruction, displacements
in the range ±32k require two bytes. Therefore, instructions using displacements in the range -
128..+127 will be shorter (and therefore faster). The CPU sign extends these shorter displace-
ments when computing the effective address.

Examples: Assume DS=1000h, ES=2000h, SS=3000h, BX=10h, SI=-8, DI=100h, and BP=300h.
Each of the following addressing modes generate the specified effective address (EA) and the
corresponding displacement is one or two bytes long, as noted:

1[bx] EA is 11h; one-byte disp.
10h[si] EA is 8, one-byte displacement.

4. Technically, “[BP]” turns out to be an indexed addressing mode, but we’ll ignore that technicality for now.

4.24 DW CS:BX+SI+4

4.25 EW ES:DI+2 0

4.26 10000

4.27 179B8

4.28 ACF04

4.29
(2000:2000, 2080:1800,
2200:0, 1FFF:2010,
1800:A000)
(3800:0, 3000:8000,
2F00:9000)
(1000:8000)

Lab Ch04

Lab 4-138

[di-80h] EA is 80h; one-byte displacement.
100h[bp] EA is 400h; two-byte displacement.

4.35 What is the effective address of each of the following addresses?

1000h[bx]_____________________ 80h[si]______________________________
SS:1[di]________________________ [bp-100h]___________________________

4.36 What physical address will the 80x86 generate for each of the above (assume real mode)?

4.37 What is the size of the displacement operand in each of the above addressing modes?

The based indexed addressing modes compute their effective address as the sum of a base register (BX or BP) and
an index register (DI or SI). As is usually the case, the [bx][di] and [bx][si] addressing modes provide offsets into the data
segment, the [bp][di] and [bp][si] addressing modes compute offsets into the stack segment. The effective address is just
the sum of the two registers.

The based indexed plus displacement addressing modes add a displacement along with two registers to obtain the
effective address. The following examples use the register values from the previous examples:

1[bx][si] EA is 19h; one-byte disp.
10h[bp][si] EA is 308, one-byte displacement.
[bx][di-80h] EA is 90h; one-byte displacement.
100h[bp][di] EA is 500h; two-byte displacement.

4.38 What is the effective address of each of the following addresses?

1000h[bx][si]_______________ 80h[bp][si]__________________
SS:1[bx][di]_________________ [bp-100h][di]________________

To easily remember all the valid 80x86 addressing modes, you need only memorize the following chart:

If you choose zero or one items from each of the columns above and wind up with at least one item, you’ve got a
valid 8086 addressing mode. Conversely, if you have an addressing mode which cannot be constructed by choosing zero
or one items from each column above, then that addressing mode is illegal.

DISP
[BX]

[BP]

[SI]

[DI]
Table to Generate Valid 8086 Addressing Modes

Memory Layout and Access

Lab 4-139

Note that all addressing modes involving [bp] on the 8086 use the stack segment by default.
All other memory addressing modes use the data segment by default.

Examples of legal addressing modes:

1[bx] [bp] [si] [bx] 10h[bp][si] ds:[5] (displacement
only) [bp+2] [di][bx] 10[bx][di]

Examples of illegal 8086 addressing modes:

[dx] [si][di] [bp+bx] [ax][bx] [bx][bx] [bx][si][di]

4.39 Which of the following addressing modes are illegal?

[bp][si+2], [si][bx] 2[di] [si][di] [bp] [bx][si] [si-4] [bp][bx]

4.40 For each of the legal memory addressing modes above, what is the
default segment that the 8086 will use when accessing memory?

4.5 The 80x86 MOV Instruction

The 80x86 MOV instruction copies data from one location to another. The syntax for this
instruction is

MOV Dest, Source

There are several restrictions on the source and destination operands. The most common form of
this instruction moves data between two registers or between a memory location and a register.
That instruction uses the following encoding:

The fields of this instruction have the following meanings:

W: Selects whether this is an eight-bit (w=0) or 16/32-bit (w=1) MOV operation5

D: Selects the direction of the MOV operation.

5. A different mechanism differentiates 16 and 32-bit moves.

opcode

displacement

addressing mode

mod reg r/m

Generic MOV Instruction

note: displacement may be zero, one, or two bytes long

x x x x x x x x

1 0 0 0 1 0 d w

x x x x x x x x

4.30 855B:3

4.31
DS:I = 10110h
DS:J = 10112h
ES:K = 20100h

4.32
DS:I = 1011:0
DS:J = 1011:2
ES:K = 2010:0

4.33
DS:[bx] = 10100h
DS:[si] = 10200h
SS:[di] = 30300h
ES:[bp] = 20400h

4.34 DS, SS

Lab Ch04

Lab 4-140

If D=0, the MOV instruction copies data from the reg operand to the mod-r/m operand. If D=1 then the MOV
instruction copies the data from the mod-r/m operand to the reg operand.

The REG field selects one of the 80x86’s registers using the following bit patterns:

The MOD and R/M fields select an operand with the following encodings:

Table 13: REG Bit Encodings

reg w=0
16-bit mode

w=1
32-bit mode

w=1

000 AL AX EAX

001 CL CX ECX

010 DL DX EDX

011 BL BX EBX

100 AH SP ESP

101 CH BP EBP

110 DH SI ESI

111 BH DI EDI

Table 14: MOD Encoding

MOD Meaning

00 The r/m field denotes a register indirect memory address-
ing mode or a base/indexed addressing mode (see the
encodings for r/m) unless the r/m field contains 110. If
MOD=00 and r/m=110 the mod and r/m fields denote dis-
placement-only (direct) addressing.

01 The r/m field denotes an indexed or base/indexed/dis-
placement addressing mode. There is an eight-bit signed
displacement following the mod/reg/rm byte.

10 The r/m field denotes an indexed or base/indexed/dis-
placement addressing mode. There is a 16-bit signed dis-
placement (in 16-bit mode) or a 32-bit signed
displacement (in 32-bit mode) following the mod/reg/rm
byte .

11 The r/m field denotes a register and uses the same encod-
ing as the reg field

Memory Layout and Access

Lab 4-141

To see how to use these tables, consider the instruction:

MOV AX, BX

The first byte of the instruction is the opcode “10000001” or 81h6. The second (and final)
byte of the instruction is the mod-reg-r/m byte. Since the D field of the opcode is zero, the reg
field of the mod-reg-r/m byte is the source operand. In the instruction above, BX is the source
operand. From the tables above you can see that the reg encoding for BX is 011. The destination
operand is a register as well. Hence, the mod field must be 11 and the r/m field must be 000
denoting the AX register. This produces a mod-reg-r/m byte of 11011000 or D8h. Therefore, the
first byte of this MOV instruction is 81h and the second byte is D8h7

4.41 There is a second, distinct, instruction which also copies BX in AX. This
instruction sets the D field of the opcode to one to produce 83h. What
would the corresponding mod-reg-r/m byte be?

4.42 What are the two encodings for the “MOV BX, AX” instruction?

This same basic opcode format lets the 80x86 processors move data between registers and
memory as well. If the mod field is not “11” then the mod and r/m fields specify a memory
location rather than a register. For example, the “MOV AX, [BX]” instruction is built as fol-
lows:

• The opcode is 83h since we’re moving 16-bit data into a register (that is, a sixteen
bit register is the reg operand).

• The mod field is 00 since there is a zero byte displacement associated with this
instruction and it specifies a memory addressing mode ([BX] really means 0[BX]
and this is a special addressing mode form which does not require a displacement
byte on the 80x86).

• The r/m field is 111 which specifies the disp+BX addressing mode.
• The reg field is 000 which specifies the AX register as the destination.

6. You’ll soon see that 83h would work as well.
7. Treated as a 16-bit value, this would normally be written D881h. However, when dealing with instruction opcodes,
most people write the first byte first followed by additional bytes separated by spaces; e.g., 81h D8h.

Table 15: R/M Field Encoding

R/M Addressing mode (Assuming MOD=00, 01, or 10)

000 [BX+SI] or DISP[BX][SI] (depends on MOD)

001 [BX+DI] or DISP[BX+DI] (depends on MOD)

010 [BP+SI] or DISP[BP+SI] (depends on MOD)

011 [BP+DI] or DISP[BP+DI] (depends on MOD)

100 [SI] or DISP[SI] (depends on MOD)

101 [DI] or DISP[DI] (depends on MOD)

110 Displacement-only or DISP[BP] (depends on MOD)

111 [BX] or DISP[BX] (depends on MOD)

4.35 1000h[bx]=1010h,
80h[si]=78h,
ss:1[di]=101h,
[bp-100h]=200h

4.36 1000h[bx]=11010h,
80h[si]=10078h,
ss:1[di]=30101h,
[bp-100h]=30200h

4.37 1000h[bx]=2 bytes,
80h[si]=1 byte,
ss:1[di]=1 byte,
[bp-100h]=2 bytes

4.38 1000h[bx]=1008h,
80h[si]=378h,
ss:1[di]=111h,
[bp-100h]=300h

4.39 [si][di] & [bp][bx]

4.40
[bp][si+2] = SS
2[di] = DS
[bp] = SS
[bx][si] = DS
[si-4] = DS
[bp][di] = SS

Lab Ch04

Lab 4-142

This yields the complete instruction 83h, 07h.

Note that there are actually three different instructions which will load the AX register with the word whose offset is
given by the value in the BX register. Although the 80x86 provides a special “displacement+BX” addressing mode which
doesn’t require any displacement bytes, there is nothing to prevent you from encoding the instruction with one or two
displacement bytes. You would, for example, specify a mod value of 01 and include a single byte of zero as the displace-
ment . This produces the instruction bytes 83h, 43h, 00h which would have the same effect as the previous sequence. Of
course, this instruction sequence is longer and might execute slower, so it’s not a good choice in most cases.

4.43 What is the third way to construct this same instruction sequence? Provide the opcode
bytes to accompany your explanation.

Please note that the 80x86’s displacement only addressing mode really corresponds to the [BP] addressing mode. It
turns out that programs rarely use the [BP] addressing mode, yet they use the displacement only addressing mode all the
time. If you really need a [BP] addressing mode, simply use the 0[BP] addressing mode.

4.44 What is the encoding for the “MOV BP, DS:[25h]” instruction?

4.45 What is the encoding for the “MOV BP, [BP]” instruction?

The 80x86 processor uses special encodings for MOV instructions which copy immediate data (constants) into regis-
ters or memory locations, to copy data between a memory location or register into and a segment register, or to load the
accumulator from the memory location specified by the displacement only addressing mode. There are also special
forms of the MOV instruction on the 80386 and later processors which allow you to move data between 32-bit registers
and memory locations. Please see the textbook for more details on the encodings of these instructions.

4.6 Memory Organization Laboratory Exercises

In this laboratory you will examine how the 80x86 family organizes values in memory. You will also create several
data structures in memory and examine them with the CodeView debugger. Finally, you will also assemble and link
some very simple assembly language programs and load them into memory with the CodeView debugger.

4.6.1 Before Coming to the Laboratory

Your pre-lab report should contain the following:

• A copy of this lab guide chapter with all the questions answered and corrected.
• A write-up on the CodeView debugger explaining, in your own words, how the following commands

work in CodeView: A, D, E (Enter), F, G, I (input), M (Move), O (Output), Q, R, T, and U.
• A write-up explaining how the MOV instruction works.

See Chapter Two of this laboratory manual for an example pre-lab report.

Note: your Teaching Assistant or Lab Instructor may elect to give a quiz before the lab begins on the material cov-
ered in the laboratory. You will do quite well on that quiz if you’ve properly prepared for the lab and studied up on the
stuff prior to attending the lab. If you simply copy the material from someone else you will do poorly on the quiz and
you will probably not finish the lab. Do not take this pre-lab exercise lightly.

Memory Layout and Access

Lab 4-143

4.6.2 Questions for the Laboratory

4.46 What are two different binary encodings for the “MOV AX, BX” instruc-
tion?

4.47 What are three different binary encodings for the “MOV AX, 0[BX]”
instruction?

4.41 11000011 or C3

4.42 (81h, C3h) & (83h,
D8h)

Lab Ch04

Lab 4-144

Memory Layout and Access

Lab 4-145

4.6.3 Laboratory Exercises

In this laboratory you will perform the following activities:

• Demonstrate the use of the CodeView debugger and many of the commands in
the debugger

• Demonstrate the operation of the 8086 MOV, LEA, LES, ADD, and MUL instruc-
tions and addressing modes.

• Enter several 8086 machine language programs into the CodeView and single step
through the programs to execute them.

• Use the debugger to modify the operation of the programs.
• Examine memory locations using CodeView and explore the memory organiza-

tion of the 8086
• Explore the various encodings of 8086 instructions.

❏ Exercise 1: Demonstrate the use of A, D, E, MF, MM, R, and U CodeView command
window debugging commands (obviously you should use the A command before the
U command to create an arbitrary machine language program several instructions
long). Capture screen output to create a log of your work (use the Print option in the
File menu to capture screen output to a file or the printer).
For your lab report: Describe the operation of each of the above commands. Include
the printout of each command demonstration in your lab report. Describe how to use
the Go and Trace commands.
For additional credit: Figure out how to resize windows in CodeView. Include a
description of this in your lab report.

❏ Exercise 2: Set the DS register to 8000h and assemble (using the CodeView “A” com-
mand) the following short program that adds the values in locations DS:0 and DS:2
together and stores the result at DS:4. Assemble the code starting at location 7000:0.
Single step through the program using the CodeView “T” command. Comment on the
results.

mov ax, ds:[0]
add ax, ds:[2]
mov ds:[4], ax
int 3 ;Terminates execution

For your lab report: Describe what happens after the execution of each of the above
statements for different values of DS:0 and DS:2. Be sure to describe all the register and
flag values.
For additional credit: Use the CodeView Go command from the command window
to execute the code above. Include a screen dump in your lab report.

❏ Exercise 3: Generate two different instruction byte sequences for the “MOV AX, BX”
instruction. Enter these bytes into memory starting at location 7000:0 using the Code-
View Enter command. Use the CodeView “U” command to disassemble the bytes
you’ve entered into memory. Comment on the results. Generate three different encod-
ings for the “MOV AX, 0[BX]” instruction (by varying the displacement size) and enter
them into memory starting at location 7000:10. Unassemble these instructions to verify
proper encoding. After entering the above, unassemble the code starting at location
7000:11. Explain the results.

For your lab report: Include the screen dump for the Enter, Dump, and Unassemble
commands. Describe what they mean.

4.43 Have a MOD value of
10 and a two-byte displace-
ment: 83h, 83h, 00h, 00h

4.44 8bh, 2eh, 25h, 00h

4.45 8bh, 6eh, 00h

4.46 81h, D8h and 83h, C3h

4.47 (81h, 03h),
(81h, 43h, 00h), and
(81h, 83h, 00h, 00h)

Lab Ch04

Lab 4-146

For additional credit: Find several other instructions that do the same thing but have different opcodes. Enter
their opcodes into memory and verify that they disassemble to comparable instructions. Include screen dumps
and a description in your lab report.

❏ Exercise 4: Using the CodeView Assemble command, enter the following sequence of instructions starting at
location 7000:0 which load values into the AL register using each of the 8086’s 17 different memory addressing
modes. Set DS and SS to 8000h and load BP, DI, SI, and BX with two, four, six, and eight, respectively. Initialize
memory locations 8000:0 through 8000:f with the values 0..F. Single step through the following 17 MOV instruc-
tions and explain the results.

mov al, ds:[0]
mov al, [bx]
mov al, [si]
mov al, [di]
mov al, [bp]
mov al, 2[bx]
mov al, 2[si]
mov al, 2[di]
mov al, 2[bp]
mov al, [bx][si]
mov al, [bx][di]
mov al, [bp][si]
mov al, [bp][di]
mov al, 2[bx][si]
mov al, 2[bx][di]
mov al, 2[bp][si]
mov al, 2[bp][di]
int 3

For your lab report: Capture the trace of the above instructions to the printer or an output file. Include this
trace in your lab report and hand comment exactly what happened on the execution of each instruction.
For additional credit: The addressing modes that use BP access the stack segment rather than the data seg-
ment. In the exercise above you’ve set SS and DS so they both point at the same segment. Modify SS so that it
contains 9000 rather than 8000. Step through the above code again and see what happens.

❏ Exercise 5: Store a 16-bit value (using the CodeView “EW” command) at location 8000:20. Display the value at
location 8002:0 using the “DW” command.. Enter a different value at location 8002:0 and then display the value
at location 8000:20.
For your lab report: Explain the results, include screen dumps.
For additional credit: Choose some other segmented addresses whose physical address corresponds to the
physical address of the above two values. Modify those addresses and capture the results. Include these screen
captures in your lab report and explain the results.

❏ Exercise 11: Connect the circuit you built for labs two and three to the parallel printer port on your computer.
Use the following output command to write a value to the LEDs on your circuit:

O port value

Port is the base address of the parallel port to which you’ve connected your circuit. To determine the appropri-
ate port address, dump memory locations 40:8 through 40:d. The first two locations (40:8 and 40:9) contain the
base I/O address for LPT1:. The second two locations (40:a and 40:b) contain the base I/O address for LPT2:.
The last pair of locations contain the base address for LPT3:. Typical addresses are 378h, 278h, and 3BCh. If a
zero appears in one of these words, then the system did not recognize the associated device. Be sure to select
the appropriate port value for your connection.
The value operand is the value to write to the printer port. For example, if you’ve connected your circuit to
LPT1: and it is at I/O address 378h (i.e., the word at location 40:8 contains 378h), you can turn off all the LEDs
with the command O 378 0. Likewise, you can turn on all the LEDs using the command O 378 ff. Try turning
on each of the LEDS individually with a set of eight “O” commands.
For your lab report: Describe the use of this command to turn on and off various LEDs on your circuit.

Memory Layout and Access

Lab 4-147

4.7 Programming Projects

❏

Lab Ch04

Lab 4-148

4.8 Answers to Selected Exercises

1) 80x86 instruction typically use the value in the DS or SS register to supply the segment component of the address.
3) a) 11000 e) 0:0 (10000:0 wraps to 0:0) i)2110f
4) a) 1100:0 e) 0:0 i) 2110:f

6) [reg], disp[reg], disp[reg*n], [reg][reg], [reg][reg*n], disp[reg][reg], disp[reg][reg*n]
where reg is one of {eax, ebx, ecx, edx, esi, edi, ebp, esp] and n = 1, 2, 4, or 8.

8) The following are some possible examples. This list certainly does not list all the possibilities.
a) Accessing registers (e.g., local or temporary variables).
b) Global variables
c) Constants
d) Accessing data through pointers
e) Accessing elements of an array
f) Accessing a elements of an array when you have a pointer to the array
g) Accessing an element of an array of structures (and a field of that element)
h) Accessing elements of an array.

11) a) 89 d8 f) c6 07 02
15) Two good reasons are the fact that (in real mode) the mov ax, [ebx] instruction is longer and runs slower.
18) al, ah, bl, bh, cl, ch, dl, dh
22) EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP
26) FS and GS.

