Chapter 5: The Event-Oriented Programming Paradigm

5.1: Who Dreamed Up This Nonsense?

A typical programmer begins their programming career in a beginning programming course or by learnil
programming on their own from some book that teaches them step-by-step how to write simple programs.
almost every case, the programming tutorial the student uses begins with a program not unlike the following:

#i ncl ude <stdi o. h>
int main(int argc, char **argv)

{
}

printf(“Hello world\n”);

This program seems so quaint and simple, but keep in mind that there is considerable education and effort ne
to get this trivial program running. A beginning programmer has to learn how to use the computer, an editor, v
ious operating system commands, how to invoke the compiler (and possibly linker), and how to execute
resulting executable file. Though the (C language) program code may be quite trivial, the steps leading up to
point where the student can compile and run this simple program are not so trivial. It should come as no surp
then, that the programming projects that immediately follow the “hello world” program build upon the lessor
before them.

One thing that quickly becomes taken for granted by a programming student’s “programmer’s view of tl
world” is that there is some concept ofmain program that takes control of the CPU when the program first
starts running and this main program drives the application. The main program calls the various functions ¢
subroutines that make up the application and, most importantly, the main program (or functions/subroutines 1
the main program calls) makes requests for operating system services via calls to the OS, which return once
OS satisfies that service request. OS calls are alsyagisronous; that is, you call an OS function and when it
completes, it returns control back to your program. In particular, the OS doesn’t simply call some function with
your program without you explicitly expecting this to happen. In fact, in the normal programming paradigm tr
OS never calls a function in your program at all - it simply returns to your pradtemyou’ ve called it.

In the Windows operating system, the concept where the user’s application has control and calls the opera
system when it needs some service done (like reading a value from the standard input device) is tossed ou
window (pardon the pun). Instead, the OS takes control of the show. It is, effectively, the “main program” th
tracks events throughout the system and calls functions within various applications as Windows accumule
ewents (like keypresses or mouse button presses) that it feels the application needs to service. This comple
changes the way one writes a program from the application programmer’s perspective. Before, the applica
was in control and knew when things were happening in the application (mainly by virtue of where the progre
was executing at any given time). In the Windows programming paradigm, however, the OS can arbitrarily c
any function in the application (well, not really, but you’ll see how this actually works in a little bit) without the
application explicitly requesting that the OS call that function. This makes writing applications quite a bit mot
complex because any of a set of functions could be called at any one given time - the application has no wa
predicting the order of invocation. Furthermore, convenient OS facilities like “read a line of text from the ke
board” or “read an integer value from the keyboard” simply don’t exist. Instead, the OS calls some function
your code every time the user presses a key on the keyboard. Your code has to save up each keystroke and
when it has read a full line of text from the keyboard (or when it has read a complete integer value, at which ti
the application must convert the string to an integer value and pass it on to whatever section of the applica
needed the integer value). Perhaps even more frustrating is the fact that a Windows GUI application cannot ¢

Page 286

output data whenever it wants to. Instead, the application needs to save up any output it wishes to display
wait for Windows to send it an event saying “Okay, how update the display screen.” The days of slipping in
quick “printf” statement (or something comparable in whatever language you're using) are long gone. Ev
worse, most programmers learned to write software in an environment where the program is doing only one tr
at a time; for example, when reading an integer from the user, the program doesn’t have to worry about val
magically appearing in other variables based on user input - no additional input may occur until the user inp
the current value. In a Windows GUI application, however, the user can actually enter a single digit for o
numeric value, switch to a different text entry box and enter several digits for a different number, then swit
back to the original input and continue entering data there. Not only does the program need to deal with
simultaneous entry of several different values, but it also has to handle partial inputs in a meaningful way (i.e
the user ultimately enters the value 1234, the program has to be able to deal with the partial input values 1,
123, as well as the file value, 1234). Since few programmers have had to deal with this type of activity when w
ing console (non-GUI) applications, this new programming paradigm requires some time before the programr
becomes comfortable with it.

This programming paradigm is known as twent-oriented programming paradrgm. It's called event-ori-
ented because the operating system detects events like keypresses, mouse activity, timer timeouts, and other
tem events, and then passes control to a program that is expecting one or more of these events to occur. Oni
application processes the event, the application transfers control back to the operating system which waits fot
next event to occur.

The event-oriented programming paradigm presents a perspective that is backwards from the way most |
grammers first learned to write software. Although this programming scheme takes a little bit of effort to becor
accustomed to, it's not really that difficult to master. Although it may be frustrating at first, because it seems li
you're having to learn how to program all over again, fret not, before too long you’ll adjust to the “Windows wa
of doing things” and it will become second nature to you.

5.2 Message Passing

Windows isn’'t actually capable of calling an arbitrary function within your application. Although Windows
does provide a specialized mechanism for calling cecalback functions within your code, most of the time
Windows communicates between itself and your application by send your application medssspee. pass-
ing is just a fancy term for a procedure callmissage is really nothing more than a parameter list. The major
difference (from your application’s perspective) between a standard procedure call and a message being pa
to your application is that the message often contains some value that tells the application what work it expec
to do. That is, rather than having Windows call any of several dozen different subroutines in your applicatic
Windows simply calls a special procedure (known as the window proceduvedmioc) and passes it the mes-
sage (that is, a parameter list). Part of the message tells the window procedure what event has occurred th:
window procedure must handle. The window procedure then transfers coigpatches) to some code that
handles that particular event.

If you've ever written a 16-bit DOS application in assembly language, you've done some message
passing. The INT 21h instruction that “calls” DOS is equivalent to calling DOS’ “window proce-
dure”. The values you pass in the 80x86 registers correspond to the message and, in particular, the
value in the AH register selects the particular DOS function you wish to invoke. Although the per-
spective is different (Windows is calling you instead of you calling Windows), the basic idea
behind message passing is exactly the same.

The messages that Windows explicitly sends to your applications are actually quite small: just a 16-byte p
load. Four of those bytes contain the message identification (that is, an integer value that tells your window f
cedure what operation to perform), four bytes formiradow handle that various functions you call will need,

Page 287

and two double-word data parameters provide message-specific data. Since Windows defines the type of 1
sages it sends to your window procedure, this small message payload (that is, the data) was chosen becau:
sufficient for the vast majority of messages and it’s efficient to pass between Windows and your applicati
(Windows memory address space is actually in a different address space on the 80x86 from your application
copying large amounts of data between address spaces can be expensive). For those few calls where Win
needs to pass more than eight bytes of data to your application, Windows will allocate a block of memory witt
your process’ address space and pass a pointer to that block of data in one of the two four-byte double words
comprise the message’s payload.

Figure 5-1 provides a block diagram of a typical Windows application. This diagram shows how the ma
program and the window procedure are disconnected. That is, the main program doesn't call the actual app!
tion code; instead, Windows handles that activity.

Figure 5-1: General Organization of a Windows Program

Application
Initialization
Code

y

Message Loop

.

Application
Cleanup ad
Exit Code

Application's
"Window <
Procedure"

Application-
specific

activities an
operations

For those who are comfortable with client-server architectures, another way to view a Windows application
as a server for Windows’ messages. That is, Windows is a client that needs to have certain work done. The a

Page 288

cation is a server that is capable of performing this work. The server (that is, the application) waits for messa
to arrive from Windows telling it what services to perform (e.g., what system events the application should he
dle). When such a message comes along, the application handles it and then waits for the next message (s¢
request) from the client (Windows). Of course, calling the Window/application relationship a client/server rel:
tionship is stretching the point somewhat, because from other perspectives the application is a client that o
requests Windows’ services. Nonetheless, from the perspective of an application’s main program, the clie
server relationship is a useful model.

One question you might have is “how does Windows know the address of your window procedure?” Tl
short answer is “you tell it.” The discussion in this chapter has given the impression that Windows applicatio
don’t have a main program. Strictly speaking, this is not true. Windows applications do have a main program t
the operating system calls when you first run the application. In theory, this main program could execute just |
the old-fashioned programs, taking control of the CPU and making (certain) calls to the OS and doing all its p
cessing the old fashioned way. The only catch is that such an application wouldn’'t behave like a standard V/
dows GUI application. This is how you write console applications under Windows, but presumably you'r
reading this book to learn how to write Windows GUI apps rather than Windows console apps. So we’ll not cc
sider this possibility any farther.

The real purpose of a Windows main program is to initialize the applica¢mder the window procedure

with the Windows OS, and then execute an event loop that receives messages from Windows, checks to se
Windows has asked the application to terminate, and then calls a Windows OS function that dispatches the r
sage to whomever it belongs (which is usually your window procedure). Take special note of the phrase “regi:
the window procedure...”. This is where you pass Windows the address of your window procedure so it kno
how to pass messages to that code. As it turns out, the operation of the main program in a typical Windows ay
cation is so standardized that most of the time you will simply “cut and paste” the main program from your pr
vious Windows application into your new application. Rarely will you need to change more than one or two lin
in this main program.

When writing a Windows GUI application in HLA, you place the code for the main program of your applica
tion between theéegi n andend associated with thgr ogramin HLA (i.e., in the main program section of the
HLA program). This may seem completely obvious to an HLA programmer, but to someone who has C/Wi
dows programming experience, this is actually unusual. The main program for a Windows application is usue
calledwinmain, at least, if you're writing the application in C/C++. However, the name “winmain” is actually a
C/C++ programming convention; the operating system does not require this name at all. To avoid confusi
we’ll continue to place our main program where HLA expects the main program when writing GUI application:

5.3: Handles

Before discussing actual Windows code, the first thing we must discuss is a very important Windows d:
structure that you'll use everywhere: thendle. The Windows operating system uses handles to keep track of
objects internal to Windows that are not present in the application’s address space. Since there is often nee
refer to such internal objects, Windows provides values known as handles to make such reference possibl
handle is simply a small integer value (held in a 32huit d variable) whose value has meaning only to Win-
dows. Undoubtedly, the handle’s value is an index into some internal Windows table that contains the data (or
address of the data) to which the handle actually refers. Windows returns handle values via API function ca
your application must save these values and use them whenever referring to the object that Windows allocate
create via the call.

The Windows C/C++ header files include all kinds of different names for handle object types. This book w
simply declare all handles agor d variables rather than trying to differentiate them by type. The truth is, you
don’t do any operations on handles (other than to pass their values to Win32 API functions), so there is little n

Page 289

to go to the extreme of creating dozens (if not hundreds) of different types that are all just isomorphisms of
dwor d type. This book will adopt the Windows/Hungarian notation of prepending an “h” to handle object name
(e.g.,hwad could be a window handle).

5.4: The Main Program

The main program of a GUI application changes very little from application to application. Indeed, most ¢
the time you’ll simply cut and paste the main program from your previous application and then edit one or tv
lines when creating a new Windows application. One problem with the main program in a Windows applicatic
is that it quickly becomes “out of sight, out of mind” and the knowledge of what is going on inside the main pre
gram quickly becomes forgotten. Therefore, it's worthwhile to spend some time carefully describing the typic
Windows main program so you'll have a good idea of what you can (or should) change with each application t
you write.

As noted earlier, one of the most important things the main program of a GUI application does is registe
window procedure with the operating system. Actually, registering the window procedure is part of a larger op
ation:registering a window class with Windows. A window class is simply a data structure that maintains impor-
tant information about a window associated with an application. One of the main tasks of the main program is
initialize this data structure and then call Windows to register the window class.

Although Microsoft uses the term “class” to describe this data structure, don't let this term confuse you.
really has little to do with C++ or HLA class types and objects. This is really just a fancy name for an instan
(that is a variable) of a Windows! WNDCLASSEX struct/record. Keep in mind, Windows was originally designed
before the days of C++ and before object-oriented programming in C++ became popular. So terms like “class
Windows don’t necessarily correspond to what we think of as a class today.

5.4.1: Filling in the wWNDCLASSEX Structure and Registering the Window

Here's what the definition af. WNDCLASSEX looks like in the HLAwindows.hhf header file:

type
VWNDCLASSEX: record
cbhSi ze . dword;
style : dwor d;
[pf nWhdPr oc : VWWDPRCC,
cbC sExtra . dword;
cbWhdExtra . dword;
hl nst ance . dword;
hl con . dword;
hCur sor . dword;
hbr Backgr ound : dwor d;
| pszMenuNane :ostring;
| pszCl assNane :ostring;
hl conSm . dword;
align(4);
endr ecord,;

Since the application’s main program must fill in each of these fields, it's a good idea to take a little space
describe the purpose of each of the fields. The following paragraphs describe these fields.

cbSi ze is the size of the structure. The main program must initialize this with the sizae WRBCLASSEX
structure. Windows uses the value of this field as a “sanity check” anWNBCLASSEX structure (i.e., are you

Page 290

really passing a reasonable structure to the function that registers a window class?). Assuming you have a:
ablewc (window class) of typ&. WNDCLASSEX, you can initialize thebsi ze field using a single statement like

the following:

mov(@i ze(w. WNDCLASSEX), wc.chbSize);

Thest yl e field specifies the window’s style and how Windows will display the window. This field is a col-
lection of bits specifying several boolean values that control the window’s appearance. You may combine thi
styles using the HLA constant expression bitwise OR operator (“|”). The following paragraphs describe the p
defined bit values that are legal for this field:

W. CS_BYTEALI GNCLI ENT

w. CS_BYTEALI GNW NDOW

w. CS_CLASSDC

w. CS_DBLCLKS

W. GLOBALCLASS
W. CS_HREDRAW

w. CS_NOCLCSE

w. CS_OANDC

w. CS_PARENTDC

w. CS_SAVEBI TS

This style tells Windows to align the window’s client area (the part of the screen
where the application can draw) on an even byte boundary in order to speed u
redraw operations. Note that the use of this option affects where Windows car
place the open window on the screen (i.e., dragging the window around may
require the window to jump in discrete steps depending on the bit depth of the win:
dow). Note that individual pixels on modern video display cards tend to consume
multiple bytes, so this option may not affect anything on a modern PC.

This style tells Windows to align the whole window on an even byte boundary in
order to speed up redraw operations. Note that the use of this option affects whet
Windows can place the open window on the screen (i.e., dragging the window
around may require the window to jump in discrete steps depending on the bi
depth of the window). Note that individual pixels on modern video display cards
tend to consume multiple bytes, so this option may not affect anything on a mod-
ern PC.

Allocates a single device context (which this book will discuss in a later chapter) to
be used by all windows in a class. Generally useful in multithreaded applications
where multiple threads are writing to the same window.

Tells Windows to send double-click messages to the window procedure when the
user double-clicks the mouse within a window belonging to the class. Generally,
this option is specified for controls that respond to double-clicks (which are, them-
selves, windows); you wouldn’t normally specify this option for the main window
class of an application.

This option is mainly for use by DLLs. We won't consider this option here.

This class style tells Windows to force a redraw of the window if a movement or
size adjustment occurs in the horizontal direction. Most window classes you creatt
for your main window will specify this style option.

This style option disables the close command for this window on the system menu

Allocates a unique device context for each window in the class. This option is the
converse ofv. CS_CLASSDC and you wouldn’t normally specify both options.

Specifies that child windows inherit their parent window’s device context. More
efficient in certain situations.

Tells Windows to save any portion of a window that is temporarily obscured by
another window as a bitmap in Windows’ system memory. This can speed up cer
tain redraws, and the window procedure for that window won’t have to process a:
many redraw operations, but it may take longer to display the window in the first
place and it does consume extra memory to hold the bitmap. This option is genet

Page 291

ally useful for small windows and dialog boxes that don’t appear on the screen fol
long periods of time but may be obscured for brief periods.

w. CS_VREDRAW This option tells Windows to redraw the window if a vertical movement or resize
operation occurs. This is another option you'll usually specify for the main appli-
cation’s window that a GUI app creates.

Typically, an application will set the cS_HREDRAWandw. CS_VREDRAWStyle options. A few applications with
special requirements might include one or two of the other styles as well. The following is a typical stateme
that you'll find in a GUI application that sets these two style options for the application’s main window (agair
assuming thatc is a variable of type. WNDCLASSEX):

nmov(w. CS_HREDRAW | w. CS VREDRAW wc.style);

Thel pf nwdPr oc field of w. WWDCLASSEX holds the address of the window procedure for the application’s
main window. Initializing this field is how you tell Windows where it can find the window procedure that is going
to process all the messages that Windows passes to your application. The window procedure must have the
lowing generic prototype:

type
VWNDPROC
procedure
(
var | pPrevWhdFunc svar;
hWhd : dwor d;
Msg : dwor d;
_wPar am : dwor d;
_| Par am . dwor d
)
@tdcall;

@eturns("eax");

If you've got an HLA procedure nam@&ddPr oc, you can initialize thec. | pf nwadPr oc field using the follow-
ing code:

nmov(&WhdProc, wc. | pfnwWhdProc);

(note that the type declaration above is invilmamespace, so there isn’t a name conflict betweem ¥iNDPROC
type and the locamdPr oc procedure in your program).

Thecbd sExt r a field specifies the number of bytes of storage to allocate immediately after the window clas
structure in memory. This provides room for application-specific information associated with the window clas
Note that if you have more than one instance of this window class (that is, if you create multiple windows fro
this same class), they will all share this same storage. Windows will initialize this extra storage with zero byt
Most applications don’t need any extra storage associated with their main window class, so this parameter is
ally zero. However, you must still explicitly initialize it with zero if you don’t need the extra storage:

nov(0, wc.chC sExtra);

ThecbwdExt r a field specifies the number of bytes of extra storage Windows will allocate for each instanc
of the window that you create. As you see before too long, it's quite possible to create multiple instances of a
gle window class; this is unusual for the main window of an application, but it's very common for other “win
dows” in the system like pushbuttons, text edit boxes, and other controls. This extra storage could hold the ¢
associated with that particular control (e.g., possibly the text associated with a text manipulation control). Wi
dows will allocate this storage in memory immediately following the window instance and initializes the bytes

Page 292

zeros. Few main application windows need this extra storage, so most Windows’ main programs will initial:
this field to zero in the window class object for the main window, e.g.,

nov(0, wc.cbWhdExtra);

Thehl nst ance field is a handle that identifies the window instance for this application. Your program will
have to get this value from Windows by makingwheet Modul eHandl e API call (which returns thel nst ance
handle value in the EAX register). You can initialize the hinstance field using the following code:

w. Get Modul eHandl e(NULL); // NULL tells Wndows to return this process’ handl e.
mov(eax, wc. hlnstance); [// Save handle away in wc structure so Wndows knows
/1 which process owns this w ndow.

Theni con field is a handle to a Windows icon resource. The icon associated with this handle is what Wi
dows will draw whenever you minimize the application on the screen. Windows also uses this code for other
poses throughout the system (e.g., showing a minimized icon on the task bar and in the upper left hand corn
the Window). Later, this book will discuss how to create your own custom icons. For the time being, however, \
can simply request that Windows use a “stock icon” as the application’s icon by calmgdhél con API func-
tion and passing a special value as the icon parameter:

w. Loadl con(NULL, val w. |Dl _APPLI CATION);
mov(eax, wc.hlcon);

The second parameterwoLoadl con is usually a string containing the name of the icon resource to use. How-
ewver, Windows also accepts certain small integer values (values that string pointers are never equal to) to spe
certain “canned” or “stock” icons. Normally, you cannot pass such a constant where HLA is expecting a reft
ence parameter, however, by prefixing the parameter with thevidLAeyword, you can tell HLA to pass the
value of the constant as the address for the reference parameter. The walwe ofPPLI CATI ON is a Windows
predefined constant that tells Microsoft Windows to use the stock application icon for this application. Note tt
if you pass NULL as the value of the second parameter (e.g., rather than w.IDI_APPLICATION), Windows wi
tell the application to draw the icon whenever the user minimizes the application. You could use this feature,
example, if you want a dynamic icon that changed according to certain data the application maintains.

Thencur sor field of thew. WWDCLASSEX record holds a handle to a cursor resource that Windows will draw
whenever the user moves the cursor over the top of the window. Likedte field discussed previously, this
handle must be a valid handle that Windows has given you. And just like the initializationhot dhefield,
we’re going to call a Windows API function to get a stock cursor we can use for our application. Specificall
we're going to ask Windows to give us the handle of an arrow cursor that will draw an arrow cursor whenever 1
user moves the cursor over our window. Here’s the code to do that:

w. LoadCursor (NULL, val w. |DC ARROW);
nov(eax, wc. hCursor);

Thew. | DC_ARROWcoONstant is a special Windows-defined value that we supply instead of a pointer to a curs
name to tell Windows to use the standard arrow cursor. Like. tteaad! con function, if you pass NULL (e.qg.,
rather than w.IDC_ARROW) as the second parameterlieadCur sor , Windows will expect the application to
draw the cursor whenever the mouse moves over the application’s window.

Thehbr Backgr ound field specifies the “brush” that Windows will use to paint the background of a window.
A Windows’brush is simply a color and pattern to draw. Generally, you'll specify one of the following color con-
stants as this handle value (though you could create a custom brush and use that; this book will discuss the
ation of brushes later on):

Page 293

« W.COLOR_ACTIVEBORDER
« W.COLOR_ACTIVECAPTION
. W.COLOR_APPWORKSPACE
« W.COLOR_BACKGROUND

« W.COLOR BTNFACE

« W.COLOR_BTNSHADOW

e W.COLOR_BTNTEXT

« W.COLOR_CAPTIONTEXT

« W.COLOR_GRAYTEXT

e W.COLOR_HIGHLIGHT

e W.COLOR_HIGHLIGHTTEXT
« W.COLOR_INACTIVEBORDER
« W.COLOR_INACTIVECAPTION
« W.COLOR_MENU

« W.COLOR_MENUTEXT

« W.COLOR_SCROLLBAR

« W.COLOR_WINDOW

« W.COLOR_WINDOWFRAME
« W.COLOR_WINDOWTEXT

Actually, the value you must supply for thier Backgr ound value is one of the above constapitss one. This is
just a Windows idiosyncrasy you'll have to keep in mimacoLOR_W NDOW(a solid white background) is the typ-
ical window color you'll probably use. The following code demonstrates this assignment:

mov(w. COLOR_W NDOW1, wc. hbr Background);

The | pszMenuNane field contains the address of a string specifyingréseurce name of the class’ main
menu, as the name appears nesaurce file. This book will discuss menus and resource files a little later. In the
meantime, if your window class doesn’t have a main menu associated with it (or you want to assign the me
later), simply set this field to NULL:

nmov(NULL, wc. | pszMenuNane);

Thel pszd assNarre field is a string that specifies the class nhame for this window. This is an important nam
that you'll use in a couple of other places. Generally, you'll specify the application’s name as this string, e.g.,

readonl y
nmyAppCl assNanme :string := “M/AppNane”;

nmov(nyAppCl assNanme, eax);
nmov(eax, wc.lpszC assNane);
The hliconSmis a handle to a small icon associated with the window class. This handle was used

Windows 95, but was ignored by Win NT (and later versions of Windows). The Windows documentation clain
that you should initialize this field to NULL in NT and later OSes (and that Windows will set this field to NULL

Page 294

upon return). Most applications, however, seem to initialize this field with the same value they shove into t
hi con field; probably not a bad idea, even if Windows does set this field to NULL later.

Once you fill in all the fields of the. WWDCLASSEX structure (i.e.ync), you register the window class with
Windows by calling thev. Regi st er a assEx API function, passing the window class objeat)(as the single
parameter, e.g.,

w. Regi ster Cl assEx(wc);

The following is all the code appearing throughout this section collected into a contiguous fragment so y
can see the complete initialization of the wc variable and the registration of the window class:

readonl y
nmyAppCl assNanme :string := “M/AppNane”;

nov(@ize(w WNDCLASSEX), wc.cbSize);

nmov(w. CS_HREDRAW | w. CS VREDRAW wc.style);
mov(&WhdProc, wec. | pfnwhdProc);

mov(0, wc.chC sExtra);

nov(0, wc.cbWhdExtra);

w. GCet Mbdul eHandl e(NULL);
nov(eax, hlnstance); /1 Save in a global variable for future use
nov(eax, wc. hlnstance);

nov(w. COLOR_W NDOW1, wc. hbrBackground);
nmov(NULL, wc. | pszMenuNane);

nmov(nyAppCl assNanme, eax);

nov(eax, wc.lpszC assNane);

w. Loadl con(NULL, val w. |DI _APPLI CATION);
nov(eax, wc.hlcon);
nmov(eax, wc. hlconSm);

w. LoadCur sor (NULL, w. |1 DC _ARROW);
nov(eax, wc. hCursor);

w. Regi sterd ass(wc);

5.4.2: “Whatis a‘Window Class’ Anyway?”

This chapter has made considerable use of the Windowsinignatow class with only a cryptic discussion of
the fact that window classes are not the same thing as C++ or HLA classes. This section will explain the diff
ence between classes in traditional object-oriented programming languages, window classes in Windows,
instances of window classes.

In a language like HLA, a class is a data type. As a general rule, there is no run-time memory associated \
a class definitioh It's only when you allocate storage for imstance of that class, that is create alject vari-

1. One could argue that virtual method table and static class data is associated with the class, not an individual instance of a
class, but unless you have at least one instance (object) of a class, there is no need for the static data or virtuademethod ta
in memory.

Page 295

able, that there is storage associated with that class. A class, therefdisast @f how an object actually uses
the memory allocated to it; that is, like a record or structure definition, a class simply defines how the progr:
should treat blocks of memory cells at some offset from the object’'s base address.

Window classes, on the other hand, do have memory allocated for theme. Vdré&able of the previous sec-
tion is a good example of a window class that has storage associated with it (indeed, the main purpose of that
tion was to describe how to initialize the memory storage associated with that window class). So from the vi
start, we see the major difference between classes in an object-oriented language and windows class: sto
Lest you wonder what Microsoft’s engineers were thinking when they created this terminology, just keep in mil
that Windows was designed long before object-oriented programming became popular (i.e., before the adver
C++, HLA, and many other popular OOP languages) and terminologyljkets versusclasses was not as
well-known as it is today.

So, then, exactly what is a window class? Well, a window class is a tefthkteescribes a common struc-
ture in memory that programs will often duplicate when creating multiple copies of a window. The beautift
thing about a window class is that it lets you initialize the window class record just once and then make multij
copies of that window without having to initialize the data structure associated with each instance of that wind
class. Now, perhaps, it's a bit difficult to understand why you would want multiple copies of a window or wh
this is even important based upon the one example we've had in this book to this point. After all, how many tir
does an application need more than one copy of the application’s window (and in the few cases where they
who really cares about the extra work needed to initialize the window class record, since this is done so in
qguently?). Well, if the application’s main window were the only window an application would use, there wouls
be little need for window classes. However, a typical Windows GUI application will use dozens, if not hundrec
of different windows. This is because Microsoft Windows supports a hierarchical window structure with small
(child) windows appearing within largepdrent) windows. Most user interface components (buttons, text edit
boxes, lists, etc.) are examples of windows in and of themselves. Each of these windows has its own winc
class. Although an application may have but a single main window, that application may have many, many, c
ferent buttons. Each button appearing on the screen is a window in and of itself, having a window procedure
all the other information associated with a window class. However, all the buttons (at least, of the same ty;
within a given application share the same windows class. Therefore, to create a new button all you have to c
create a new window based on the button window class. There is no need to initialize a new window class st
ture for each button if that button shares the attributes common to other buttons the application uses.

Another nice thing about window classes is that Microsoft pre-initializes several common window classt
(e.g., the common user interface objects like buttons, text edit boxes, and lists) so you don'’t even have to ini
ize the window class for such objects. If you want a new button in your application, you simply create a new wi
dow specifying the “button” window class. Since Windows has already registered the button’s window class, y
don’t have to do this. Therein lies the whole purpose ofvutRegi st er W ndowAPI call: it tells Microsoft Win-
dows about this new window class. Once you register a window class with Microsoft Windows, your applicatic
can create instances of that window via her eat ew ndowex API call (which the next section describes).
Although your application will typically create only a single instance of the main application’s window, it is quite
likely you'll create other window classes that represastom controlsthat appear within your application. Then
your application can create multiple instances of those custom controls by simply calng #w eW ndowex
API for each instance of the control.

2. The use of the term template, in this context, is generic. This has nothing to do with C++ templates.

Page 296

5.4.3:

Registering a window with the Regi st er W ndowex API call does not actually create a window your appli-
cation can use, nor does it display the window on your video screen. All this APl does is create a template for
window and let Microsoft Windows know about the template so future calls can create instances of that windc

Creating and Displaying a Window

The API function that actually creates the window is called (obviously enaughgat eW ndowex.
Thew. Cr eat eW ndowex prototype (appearing in thuser32.hhf header file) is the following:

Cr eat eW ndowEx: procedure

(

dweExSt yl e : dwor d;
| pd assNane :string;
| pW ndowNane »string;
dwst yl e : dwor d;
X : dwor d;
y : dwor d;
nW dt h : dwor d;
nHei ght : dwor d;
hwWwhdPar ent : dwor d;
hMenu : dwor d;
hl nst ance : dwor d;
var | pParam Dvar

);

@tdcall;

@eturns("eax");

@xternal ("__inp__Creat eWndowExA@8");

ThedwExSt yl e parameter specifies an extended style value for this window (the extended style parameter
what differentiates the. Cr eat ew ndowex function from the oldew. Cr eat ew ndowAPI call). This parameter is
a bitmap containing up to 32 different style settings that are enabled or disabled by setting the appropriate
Thewindows.hhf header file defines a set of constants with names of thesfosnEeX_* that correspond to the
possible extended styles. There are a few too many of these, and most of them are a bit too complex, to pres
this time. Please see the user32 reference manual (appearing on the CD-ROM accompanying this book) for r
details on these extended style values). For the time being, you can initialize this field with zero or, if you pre
you can use the constamtws_EX_APPW NDOWwhich tells Windows to put an icon on the taskbar for a top-level
instance of this window.

Thel pc assNane field specifies the name of the window class on which you're basing the window you're
creating. Generally, this is the string you've supplied as the class hame in thevcRdiict er W ndow. For cer-
tain pre-defined window classes that Windows defines, you can also sumtibmavalue here. An atom is a
small 16-bit integer value that uniquely specifies an existing window class (e.qg., like the cursor and icon valt
we saw in the last section). Windows differentiates atoms from strings by looking at the H.O. word of tf
| pil assName parameter value. If this H.O. word contains zero, then Windows assumes that it's an atom value
the H.O. word is non-zero, then Windows assumes that this parameter contains the address of some string o
(note that pointer values in Windows always have a H.O. word that is non-zero).

To pass an atom value rather than a string object as this first parameter, you should usevtiiekdippord
as a prefix on the atom value, e.g.,

w. Cr eat eW ndowEx

(
0,

Page 297

)

val

SonreAt onVval ue, /1 Atom val ues need the “VAL” keyword prefix.
“W ndowNane”,

w. W6_ OVERLAPPEDW NDOW // W' Il explain the follow ng nonentarily...
w. CW USEDEFAULT,

w. CW USEDEFAULT,

w. CW USEDEFAULT,

w. CW USEDEFAULT,

NULL,

NULL,

hl nst ance,

NULL

Technically, thel pCl assName parameter points at a zero-terminated string. However, since HLA string
objects are upwards compatible with zero-terminated stringsy. tbresat eW ndowEx prototype specifies an
HLA string variable as this parameter. This turns out to be most convenient because most.calistew n-
dowex will specify a literal string constant or an HLA string variable here. However, if you've got a zero-termi-
nated string that you'd like to use, you don’t need to first convert it to an HLA string, you can use code like tl
following to directly pass the address of that zero-terminated strimgct@at eW ndowEx:

| ea(eax, SoneZeroTerm natedString);
w. Cr eat eW ndowEx

(

)

0,

(type string eax), /'l Passes pointer to zstring found in EAX
“W ndowNane”,

w. W6 OVERLAPPEDW NDOW /1 We'I'l explain the follow ng nonentarily...
w. CW USEDEFAULT,

w. CW USEDEFAULT,

w. CW USEDEFAULT,

w. CW USEDEFAULT,

NULL,

NULL,

hl nst ance,

NULL

Here are some constant values that Windows predefines that you may pass as atom values in place of a ¢
for thel pc assNanme parameter (an in-depth explanation of these class types will appear later in this book):

w. BUTTON This is a small rectangular window that corresponds to a push button the user ca
click to turn it on or off.

w. COVBOBOX Specifies a control that consists of a list box and a text edit control combined into ¢
single control. This control allows the user to select some text from a list or type
the text from the keyboard.

w. EDIT This specifies an edit box which is a rectangular window into which the user may
type some text.

w. LI STBOX This atom specifies a list of character strings. The user may select one of thes
strings by clicking on it.

w. MDI CLI ENT Designates an MDI (multiple document interface) client window. This tells Win-

dows to send MDI messages to the window procedure associated with this win
dow.

Page 298

w. Ri chEdi t Specifies a Rich Edit 1.0 control. This provides a rectangular window that supports
text entry and formatting and may include embedded COM objects.

w. Rl CHEDI T_CLASS Specifies a Rich Edit 2.0 control

w. SCROLL_BAR Specifies a rectangular window used to hold a scroll bar control with direction
arrows at both ends of the scroll bar.

w. STATI C Specifies a text field, box, or rectangle used to label, box, or separate other cor
trols.

For the main application’s window, you would not normally specify one of these atoms as a window clas
Instead, you'd supply a string specifying a name for the application’s window class. We'll return to the discu
sion of controls in a later chapter in this book.

The thirdw. Cr eat eW ndowex parameter| pw ndowNane, is a string that holds the window’s name. This is
caption that is associated with the window'’s title bar. Some applications will also identify an instance of a wi
dow on the screen by using this string. Typically, if you have multiple instances of a window class appearing
the screen at the same time, you will give each instance a uniqgue window name so you can easily different
them. Generally, the class name and the window name are similar, but not exactly the same. A class name
cally looks like a program identifier (i.e., no embedded spaces and the characters in the name would be those
are legal in a program source file). The window name, on the other hand, is usually formatted for human c
sumption.

The fourth parametedwst yI e, specifies a set of window styles for the window. Likedilex St yl e param-
eter, this object is a bitmap containing a set of boolean values that specify the presence or absence of some
dow attribute. The following is a partial list of values you may logically OR together for fortmagshel e value.
WE'Il explain the terminology and specifics later in this book. These are thrown out here just for completene
WE' Il actually only use a single window style for our application’s main window.

w. Ws_BORDER Specifies a thin border around the window.

w. Ws_CAPTI ON Creates a window that has a title bar (also set®. & BORDER attribute).

w. W8_CHI LD Creates a child window. Mutually exclusive to thes_POPUP attribute.

w. W5_CHI LDW NDOW Same as. Ws_CHI LD attribute.

w. Ws_CLI PCHI LDREN Excludes the area occupied by child windows when drawing occurs within the par-
ent window. Use this style when creating a parent window.

w. W5_CLI PSI BLI NGS Clips child windows relative to one another. Specify this when creating a child
window when you have several child windows that could overlap one another.

w. Ws_DI SABLED Creates a window that is initially disabled.

w. W5_DLGFRAMVE Creates a window with a border designed for a dialog box.

w. W5_GROUP Specifies the first control of a group of controls (remember, controls are windows).

The next control that has the wWS_GROUP style ends the current group ant
begins the next group.

w. W5_HSCROLL Creates a window with a horizontal scroll bar.

w. W5_| CONI C Creates a window that is initially minimized.

w. W5_VMAXI M ZE Creates a window that is initially maximized.

w. W5_MAXI M ZEBOX Creates a window that has a maximize button.

w. W5_M NI M ZE Creates a window that is initially minimized (same as w.WS_ICONIC).
w. W6_M NI M ZEBOX Creates a window that has a minimize button.

Page 299

w. W5_ OVERLAPPED
w. W5_ OVERLAPPEDW NDOW

w. Ws_POPUP
w. Ws_POPUPW NDOW

w. W5_SI ZEBOX

w. W5_ SYSMENU

w. W5_THI CKFRAVE
w. Ws_TI LED

w. Ws_TI LEDW NDOW
w. Ws_VI S| BLE

W. W8_VSCROLL

Creates an overlapped window.

This is a combination of several styles inclwd@s_OVERLAPPED, w. W5_CAPTI ON,
w. W5_SYSMENU, w. Ws_SI ZEBOX, w. W5_M NI M ZEBOX, and w. Ws_NMAXI M ZEBOX.
This is the typical style an application’s window will use.

Creates a popup window. Mutually exclusive towhes_CHI LD window style.

Creates a pop-up window with the following styless BORDER, w. Ws_POPUP,
w. W6_SYSMENU. Thew. Ws_POPUPW NDOWand w. W5_CAPTI ON styles must both be
active to make the system menu visible.

Creates a window that has a sizing border. This style is the same as thi
w. W8_THI CKFRAME style.

Creates a window that has a system menu box in its title bar. You must also specif
thew. W5_CAPTI ON style when specifying this attribute.

Same as. W5_S| ZEBOX Style.

Save as the. Ws_OVERLAPPED style.

Same as the. Ws_OVERLAPPEDW NDOWStyle.
Creates a window that is initially visible.
Creates a window that has a vertical scroll bar.

These styles are appropriate for generic windows. Certain window classes have their own specific set of winc
styles. In particular, the button window class, the combobox window class, the text edit window class, the list &
window class, the scroll bar window class, the static window class, and the dialog window class have their o
set of window style values you can supply for this parameter. We'll cover this specific window styles when v
discuss those controls later in this book.

For generic windows, the. Ws_OVERLAPPEDW NDOWStyle is a good style to use. Depending on your needs,
you may want to merge in the Ws_HSCROLL and w. W6_VSCROLL styles as well. You can also specify the
w. W&_VI SI BLE style if you like, but we’ll be making a call to make the window visible soon after calliig-
at eW ndowEx, SO merging in this style isn't necessary.

The next four parameters, y, nWwdth andnHei ght specify the position and size of the window on the
display. If your window must be a certain size and it must appear at a certain location on the screen, then
may fill in this parameter with appropriate screen coordinate values. Another good use of these parameters
automatically restore the application window’s position and size from their values the last time the user ran
application (presumably, you've saved the values in a file or in the system registry before quitting if your applic
tion is going to do this). Most applications (particularly, those that allow the user to resize the window) dor
really care about the initial size and position of the main application window. After all, if the user doesn't lik:
what comes up, the user can move or resize the window to their liking. In such situations, a user can supply
generic constani. CW USEDEFAULT that tells Windows to place the window at an appropriate point on the
screen. Windows will typically center such windows and have them consume approximate half the screen’s si

If you decide to supply explicit coordinates and dimensions for the application’s window, be cognizant of tt
fact that Windows runs on a wide variety of machines with window sizes ranging from 640x480 (and, technica
even smaller) to very large. When choosing a screen position and size for your window, be sure to consider
fact that someone may be running your application on a machine with a smaller screen than the one on \
machine. This is why using Cw USEDEFAULT, if possible, is a good idea. Windows can automatically adjust the
window dimensions as appropriate for the machine on which the application is running.

The hwadPar ent parameter supplies the handle of a parent window whenever you're creating a child win
dow. Buttons, text edit boxes, and other controls are good examples of child windows. An application’s me

Page 300

window, however, isn’'t a child window. So you’ll normally supply NULL for this parameter when creating the
main window for an application.

ThehMenu parameter provides the handle for a menu to be used with a window or a child window identifie
for the child window style. We’ll come back to the discussion of menus in a later chapter. For now, you can ple
a NULL in this field to tell windows that your application’s window doesn’t have a menu.

Thehl nst ance parameter is where you pass the module (application) handle. You obtain this value via tf
W. Get Modul eHandl e API call. Note that the window class variabhe {n the previous section) also requires this
handle, when the application’s main program initialized the class variable it also saved the application’s han
into a global variable hinstance for use b\cr eat ew ndowex API calls. Because future calls will need this
value as well, having it available in a global variable is a good idea (of course, it's also present inithe
st ance field, but it’s still convenient to keep it in a global variable).

The lastw. Cr eat eW ndowEx parameter is used to specify the addressvofCREATESTRUCT object for MDI
windows. If you're not creating an MDI window (and most applications don’t), you can specify NULL for this
field.

Thew. Cr eat eW ndowex API function returns a handle to the window it creates in the EAX register. You will
use this handle whenever referencing the window. Therefore, it's a good idea to save away this variable int
global variable immediately upon return fremcr eat ew ndowex (you'll want to use a global variable because
lots of different procedures and functions through out the application will need to reference this variable’s valu

The w.CreateWindowEx API function creates an actual instance of some window class and initializes
appropriately. It does not, however, actually put the window on the screen. That takes another couple of calls
some extra work. To tell windows to show your window (i.e., make it visible), you use shew ndow API

call thusly:
w. ShowWw ndow(hwnd, w. SW SHOANCRVAL) ;

The first parameter to this function is the window handlevthateat W ndowex returns. The second parameter
specifies how Windows should display the window,wh&w SHOWNORMAL is the appropriate value to use when
displaying the window for the first time.

Despite its namey. Showw ndow doesn’t actually make your window visible on the display. It simply sets the
“show state” for this particular window. Although Windows will draw the frame of your window for you, it is
your responsibility to actually fill in the “client area” of the window. That is done by having Windows send you
application a message telling it to paint itself. Although you currently have control of the CPU, one thing yc
cannot arbitrarily do is draw to the screen without Windows telling you to do so (this is especially importal
because your window isn’'t even on the screen at this point). In order to draw your window, you've got to te
Windows to send your window procedure a message and then your window procedure can do the job of actu
filling in the screen information. You can do this with. apdat ew ndow call as follows:

w. Updat eW ndow(hwnd);

Again, remembeny. Updat eW ndow does not actually draw the window. It simply tells Windows to send your
application a message that will cause it to draw the window (inside the window procedure). The actual drawi
does not take place in your application’s main program.

Once you've told Windows to update your window so it can be drawn for the first time, all that’s left for you
main program to do is to process Windows’ messages. The next section describes that activity. At this po
you've created your window and told Windows to display it. Once you begin processing Windows’ message

3. Despite its name, you actually use whe&showW ndowAPI function to show or hide a window. See the API documenta-
tion for more details.

Page 301

you'll actually display the window (since one of the first messages that will come along is the message telli
your application to draw its window).

5.4.4: The Message Processing Loop

After you initialize, register, and create your application’s main window and tell Windows to display the win
dow, the last major piece of work your application’s main program must do is begin processing Windows me
sages. The message processing loop is actually a small piece of code, so short that we’ll just reproduce the v
thing in one chunk:

forever

w. Get Message(nmsg, NULL, O, 0); // Get a nessage from W ndows

breakif(EAX = 0); /1 When Get Message returns zero, tinme to quit
w. Tr ansl at eMessage(nsg); /1 Converts keyboard codes to ASCl
w. Di spat chMessage(nsg); /1 Calls the appropriate w ndow procedure
endf or;
nov(msg. wParam eax); /] Get this program s exit code
w. Exi t Process(eax); /1 Quit the application

This code repeatedly calls Get Message until w. Get Message returns false (zero) in the EAX register. This
is a signal from Windows that the user has decided to terminate our amazing prograt. NEssage returns
true, then the message loop callgr ansl at eMessage (which mainly processes keystrokes) and then it calls
w. Di spat chMessage (Which passes the messages on to the window procedure, if appropriate).

Thew. Get Message function transfers control from your program to Windows so Windows can process key:-
strokes, mouse movements, and other events. When such an event occurs (and is directed at your program),
dows returns fromw. Get Message after having filled in thensg variable with the appropriate message
information. The filter parameters should contain zerow(S&t Message will return all messages from the
gueue). The second parameter normally contains NULL which means that the program will process all messe
sent to any window in the program. If you put a window handle hereptl@®@nMessage will only return those
messages directed at the specified window.

On return, thersg parameter contains the message information returned by Windows. Normally, you ca
ignore the contents of this message variable, all you really need to do is pass the messagewonr tméhe
| at eMessage andw. Di spat chMessage functions. However, just in case you're interested, here’s the definition
of thew. MsGtype in thewindows.hhf header file:

type

MSG record
hwnd . dword;
nessage : dword;
wParam : dword;
| Param : dword;
tinme . dword;
pt . PO NT;

endr ecord;

Thew. Transl at eMessage API function takes messages containing keyboard virtual scan codes and corr
putes the ASCII/ANSI code associated with that keystroke. By placing this function call in the main messa

Page 302

passing loop, Microsoft effectively provides a “hook” allowing you to replace this translation operation with :
function of your own choosing. The Tr ans| at eMessage takes scan codes of the fodmft down, shift up, ‘A

key down, ‘A’ key up, control key down, andcontrol key up and decides whether a virtual key code like the code
for the ‘A key should be converted to the character ‘a’, ‘A, control-A, Alt-A, etc. Normally, you'll want this
default translation to take place, so you'll leave in the call T ans| at eMessage. However, by breaking out

the call in this fashion, Windows allows you to replace&r ans| at eMessage entirely, or inject some code to
handle a specific keystroke sequence that you want to handle specially within your application.

Thew. Di spat chMessage API function takes the translated message and calls the appropriate window proce
dures, passing along the (translated) message. Upon returw. fbbspat chMessage, every application window
that has reason to deal with that message will have done so.

At first blush, it might seem weird that Microsoft would even make you write the message processing loop
part of your main program. After all, the loop simply makes three calls to Win32 API functions; surely the O
could bury this code inside the operating system and spare the application’s main program the (admittedly sn
expense of dealing with this operation. However, the main reason for requiring this code in the application pt
gram is explicitly to provide the application with the ability to hook into the message processing loop both befc
and after the call ta. Di spat chMessage.

5.4.5: The Complete Main Program

Here’s the source code for a complete Windows’ main program, collected into one spot:

program nai n;

#i ncl ude(“wpa. hhf”) /1 Abridged version of w ndows. hhf/w. hhf
st or age

hl nstance : dword; /1 Application’s nodul e handl e

hwnd : dwor d; /1 Main application w ndow handl e

nsg s w. MVBG, /1 Message data passed in from W ndows

we :wW. WNDCLASSEX; // W ndows class for main app w ndow
readonly

nmyAppCl assNane :string := “M/AppNane”;

<< Ot her declarations and procedures would go here... >>

begi n mai n;

nmov(@ize(w WNDCLASSEX), wc.cbSize);

nov(w. CS_HREDRAW | w. CS_VREDRAW wc.style);
nmov(&WhdProc, wc. | pfnWdProc);

nmov(0, wc.chC sExtra);

nmov(0, wc.cbWhdExtra);

w. Get Modul eHandl e(NULL);
nov(eax, hlnstance); /1 Save in a global variable for future use
nov(eax, wc.hlnstance);

nov(w. COLOR_W NDOW1, wc. hbrBackground);
nmov(NULL, wc. | pszMenuNane);

nov(nyAppCl assNanme, eax);

nmov(eax, wc.l|pszC assNane);

Page 303

w. Loadl con(NULL, val w. |Dl _APPLI CATION);
mov(eax, wc.hlcon);
mov(eax, wc, hlconSm);

w. LoadCur sor (NULL, w. |1 DC_ARROW) ;
mov(eax, wc. hCursor);

w. Regi sterd ass(wc);

w. Cr eat eW ndowEx
(

o, /'l No specific extended styles

myAppC assNarne, /1 This application’ s class nane.

“My First App”, /1 W ndow caption

w. W6_ OVERLAPPEDW NDOW // Draw a nornmal app w ndow.

w. CW USEDEFAULT, /1 Let Wndows choose the initial

w. CW USEDEFAULT, /1 size and position for this w ndow.

w. CW USEDEFAULT,
w. CW USEDEFAULT,

NULL, /1 This is the parent w ndow.

NULL, /1 This wi ndow has no default nenu.
hl nst ance, /1 Application s handle.

NULL /1 \W’re not a child wi ndow.

)

w. Showw ndow(hwnd, w. SW SHOANORMAL) ;
w. Updat eW ndow(hwnd);

forever

w. Get Message(nmsg, NULL, O, 0); // Get a message from W ndows

breakif(EAX = 0); /1 \When Get Message returns zero, tinme to quit
w. Tr ansl at eMessage(nsg); /1 Converts keyboard codes to ASCl I
w. Di spat chMessage(nsg); /1 Calls the appropriate w ndow procedure
endf or;
mov(nsg. wParam eax); /'l Get this programis exit code
w. Exi t Process(eax); /1 Quit the application
end main;

5.5: The Window Procedure

Since the application’s main program doesn't call any other functions within the application, someone rec
ing the source code to a Windows application for the first time may very well wonder how the rest of the code
the application executes. As this chapter notes in several places, Windows automatically calls the window prc
dure whose address appears inlthienwidPr oc field of the window class variable when it needs to send the
application a message. Part of the message package that Windows passes to the window procedure is a valu
specifies the message type. The window procedure interprets this value to determine what activity to perforn
response to the message. The window procedure (or subroutines called by the window procedure) is where a
activity takes place in a typical windows application.

The prototype for a window procedure takes the following form:

Page 304

procedure WhdProc(hwnd: dword; uMsg: dword; wParam dword; | Param dword);
@tdcall;
@odi spl ay;
@ost ackal i gn;

The traditional name for this procedurengiPr oc and that's the name you’ll see most programs use. However,
you may use any name you like here. All that Windows cares about is that you initialipéritvedPr oc field

of the window class variable with the address of this procedure prior to registering the window. So if you nam
this procedurey W ndowPr ocedur e it would work fine as long as you initialized the window class variable (say,
we) with its address as follows:

nmov(&WW ndowPr ocedure, wc. | pf nWwhdProc);

The hwnd parameter is a handle to the window at which this message is explicitly directed. All of the win
dows instantiated from the same window class share the same window procedure. This allows a single winc
procedure to process messages for several different windows. Of course, typically there is only a single inste
of the main application’s window class (that is, the main application’s window) so your main window procedut
typically handles messages for only one window. However, if you create multiple instances of some windc
class (e.g., you're creating a component like a button), you can explicitly test to see if the message is directed
specific instance of that window class by comparingnttrel parameter against the handle value thar e-
at eW ndowEx returns. In this chapter, we’ll assume that there is only one instance of the main application’s wi
dow, so we’'ll just ignore thiewnd parameter.

TheuMsg parameter is an unsigned integer value that specifies the type of the message Windows is senc
the window procedure. There are, literally, hundreds of different messages that Windows can send an applicat
You can find their values in the windows header files by searching for the constant definitions that begin w
“WM_" (the WM, obviously, stands for “Windows Message”). There are far too many to present the entire lis
here, but the following constant declarations provide examples of some common Windows messages that c
be sent to your application’s window procedure:

const
WV CREATE : = $1;
W/ DESTROY : = $2;
WM MOVE : = $3;
WM SI ZE : = $5;
WM ACTI VATE : = $6;

WM _CUT : = $300;

WM COPY : = $301;
VWM PASTE : = $302;
WM CLEAR : = $303;
VWM UNDO : = $304;

The important thing to notice is that commonly used message values aren’t necessarily contiguous (indeed,
can be widely spaced apart) and there are a lot of them. This pretty much precludeswising/@aase state-

ment (or an assembly equivalent - a jump table) because the corresponding jump table would be huge. Since
window procedures process more than a few dozen messages, many application’s window procedures just
if..else if chainto comparemsg against the set of messages the window procedure handles; therefore, a tyj
ical window procedure often looks somewhat like the following:

Page 305

procedure WhdProc(hwnd: dword; uMsg: dword; wParam dword; | Param dword);
@tdcall;
@odi spl ay;
@ost ackal i gn;

begi n WhdPr oc;

/1 uMsg contains the current nessage Wndows is passing along to

/1 us. Scan through the "Dispatch” table searching for a handler

/1l for this nmessage. |If we find one, then call the associated

/1 handl er procedure. |If we don't have a specific handler for this
/'l message, then call the default w ndow procedure handl er function.

mov(uMsg, eax);
if(eax = w. WM DESTROY) then

w. Post Qui t Message(0); /1 Do this to quit the application
el seif(eax = w. WM PAINT) then

<< At this point, do whatever needs to be done to draw the w ndow >>
el se

/1 1f an unhandl ed nessage cones al ong,

/1l let the default w ndow handl er process the

/'l message. \Watever (non-zero) value this function
/1l returns is the return result passed on to the

/'l event | oop.

w. Def W ndowPr oc(hwnd, uMsg, wParam | Param);
endi f;

end WhdPr oc;

There are two problems with this approach. The major problem with this approach is that you wind up pr
cessing all your application’s messages in a single procedure. Although the body idgf satement could, in
theory, call a separate function to handle that specific message, in practice what really happens is the proc
winds up putting the code for a lot of the messages directly into the window procedure. This makes the wind
procedure really long and more difficult to read and maintain. A better solution would be to call a separate pro
dure for each message type.

The second problem with this organization for the window procedure is that it is effectively doing a linez
search using themsg value as the search key. If the window procedure processes a lot of messages, this ling
search can have a small impact on the performance of the application. However, since most window proced:
don’t process more than a couple dozen messages and the code to handle each of these messages is usuall
plex (often involving several Win32 API calls, which are slow), the concern about using a linear search is not t
great. However, if you are processing many, many, different types of messages, you may want to consider usi
binary search or hash table search to speed things up a bit. We'll not worry about the problem of using a lin
search in this book; however, the cost of getting to the window procedure and the cost associated with proces
the message is usually so great that it swamps any savings you obtain by using a better search algorithm. t
ewer, those looking to speed up their applications in certain circumstances may want to consider a better se

Page 306

algorithm and see if it produces better results. Of course, another alternative is to go ahead and use a jump
(large though it might be) which can transfer control to an appropriate handler in a fixed amount of time.

There are a couple of solutions to the first problem (organizing the code so that it is easier to read and m
tain). The most obvious solution, as noted earlier, is to call a procedure withinfeachen body. A possibly
better solution, however, is to use a table of message values and procedure addresses and search through th
until the code matches a message value; then the window procedure can call the corresponding procedure fo
message. This scheme has a couple of big advantages over theen. . el sei f chain. First of all, it allows
you to write a generic window procedure that doesn’t change as you change the set of messages it has to he
Second, adding new messages to the system is very easy. Here’s the data structures we’ll use to implement:

type
MsgProc_t: procedure(hwnd: dword; wParam dword; | Param dword);
MsgProcPtr _t:
record
MessageVal ue: dwor d;

MessageHndl r: MsgProc_t;

endr ecor d;

MsgProc_t is the generic prototype for the message handler procedures we're going to write. The parameters
this function almost mirror the parameters Windows passes to the window procedune gthpmrameter is
missing because, presumably, each different message value invokes a different procedure so the procedure s
trivially know the message valuggPr ocPt r _t is a record containing two entries: a message nunvbes«-

geVal ue) and a pointer to the message handler procedbsedgeHndl r) to call if the current message number
matches the first field of this record. The window procedure will loop through an array of these records comp
ing the message number passed in by WindowsMig) against thevessageVal ue field. If a match is made,
then the window procedure calls the function specified bytheageHnd! r field. Here’s what a typical table
(namedbi spat ch) of these values looks like in HLA:

readonly

Di spat ch: MsgProcPtr _t; @ostorage;

MsgProcPtr _t
MsgProcPtr _t:[w WM DESTROY, &QuitApplication],
MsgProcPtr t:[w VWM _PAI NT, &Pai nt],

/'l Insert new nessage handl er records here.

MsgProcPtr _t:[O, NULL]; /1 This marks the end of the |ist.

Each entry in the table consists of a record constant (&gpProcPtr _t:[w. WM DESTROY, &Qui t Appl i ca-

tion]) containing a message number constant and the address of the procedure to call when the current mes
number matches that constant. The end of the list contains zeros (NULL) in both entries (e.c
MsgProcPtr_t: [0, NULL]).

To handle a new message in this system, all you have to do is write the message handling procedure and
a new entry into the table. No changes are necessary in the window procedure. This makes maintenance c

Page 307

window procedure very easy. The window procedure itself is fairly straight-forward, here’s an example of a wi
dow procedure that processes the entries ibithgat ch table:

/1 The wi ndow procedure.

/1
/1 This is actually a function that returns a return result in
/1 EAX. If this function returns zero in EAX, then the event

/1 1oop term nates program execution.

procedure WhdProc(hwnd: dword; uMsg: dword; wParam dword; | Param dword);
@tdcall;
@odi spl ay;
@ost ackal i gn;

begi n WhdPr oc;

/1 uMsg contains the current nessage Wndows is passing along to

/1 us. Scan through the "Dispatch” table searching for a handler

/1l for this nmessage. |If we find one, then call the associated

/1 handl er procedure. |If we don't have a specific handler for this
/'l message, then call the default w ndow procedure handl er function.

mov(uMsg, eax);
nmov(&Di spatch, edx);
forever

mov((type MsgProcPtr _t [edx]).MessageHndlr, ecx);
if(ecx = NULL) then

/1 1f an unhandl ed nessage cones al ong,

/1 let the default w ndow handl er process the

/'l message. \Watever (non-zero) value this function
/1l returns is the return result passed on to the

/'l event | oop.

w. Def W ndowPr oc(hwnd, uMsg, wParam | Param);
br eak;

elseif(eax = (type MsgProcPtr_t [edx]).MessageVal ue) then

/1 1f the current nmessage matches one of the val ues

/1 in the nmessage dispatch table, then call the

/1l appropriate routine. Note that the routine address

/1 is still in ECX fromthe test above. This code nanual ly

/'l pushes the paranmeters and calls the handl er procedure (note

/1 that the nmessage handl er procedure uses the HLA/ Pascal calling
/'l sequence, so we nust push the actual paraneters in the sane

/1 order as the fornmal paraneters were decl ared).

push(hwnd); /'l (type tMsgProc ecx)(hwnd, wParam | Paran)
push(wParam); // This calls the associated routine after
push(| Param); // pushing the necessary paraneters.

call (ecx);

sub(eax, eax); // Return value for function is zero.

Page 308

br eak;

endi f;
add(@i ze(MsgProcPtr_t), edx); [// NMove on to next table entry.

endf or;

end WhdPr oc;

This code uses EDX to step through the tablesgPr ocPtr _t records. This procedure begins by initializing
EDX to point at the first element of tbespat ch array. This code also loads tingsg parameter into EAX where

the procedure can easily compare it againsitleageVval ue field pointed at by EDX. A zero routine address
marks the end of tha spat ch list, so this code first moves the value of that field into ECX and checks for zero.
When the code reaches the end ofbhepat ch list without finding a matching message number, it calls the
Windows APIlw. Def W ndowPr oc function that handles default message handling (that is, it handles any mes
sages that the window procedure doesn't explicitly handle).

If the window procedure dispatch loop matches the value in EAX with one Df ¢het ch table’s message
values, then this code calls the associated procedure. Since the address is already in ECX (from the compa
against NULL for the end of the list), this code manually pushes the parameters for the message handling pr
dure onto the stack (in the order of their declaration, since the message handling functions using the HLA/Pa
calling convention) and then calls the handler procedure via the address in ECX.

This routine chose EAX, ECX, and EDX because the Intel ABI (and Windows) allows you to trash these re
isters within a procedure call. The Intel ABI also specifies that functions should return 32-bit results in the EA
register, which is another reason for using EAX - it's going to get trashed by the return result anyway. Note tl
the message handler procedures must also follow these rules. That is, they are free to disturb the values in E
ECX, and EDX, but they must preserve any other registers that they modify. Also note that upon entry into 1
message handling procedures, EAX contains the message number. So if having this value is important to you
example, if you use the same message handler procedure for two separate messages), then just referenc
value in EAX.

Once we have tha spat ch table and th&ndPr oc procedure, all that’s left to do is write the individual mes-
sage handling procedures and we’ll have a complete Windows application. The question that remains is: “W
applications shall we write?” Well, historically, most programming books (including almost every Windows pro
gramming book) has started off with the venerable “Hello World” program. So it makes perfect sense to contin
that fine tradition here.

5.6: Hello World

To create a complete Windows GUI application based on the code we've written thus far, we've only got
add two proceduresui t Appl i cati on andPai nt . A minimal Windows GUI application (likelelloWorld) will
have to handle at least two message®i DESTROY (which tells the application to destroy the window created
by the main program and terminate execution)vad PAI NT (which tells the application to draw its main win-
dow).

The Qui t Appl i cati on is a fairly standard procedure; almost every Windows GUI app you write with HLA
will use the same code. Here is a sample implementation:

/1 QuitApplication:
/1
/1 This procedure handl es the "wm Destroy" nessage.

Page 309

/1 1t tells the application to termnate. This code sends
/1 the appropriate nmessage to the nmain progranmli s nessage | oop
/1 that will cause the application to terni nate.

procedure QuitApplication(hwnd: dword; wParam dword; | Param dword);
@odi spl ay;
begin QuitApplication;

w. Post Qui t Message(0);

end QuitApplication;

Thew. Post Qui t Message API function does just what its name implies - it sends (“posts”) a message to the
main message loop that tells the message loop to terminate the program. On the next iteration of the mes
loop in the main program, the Get Message function will return zero in EAX which tells the application to ter-
minate (look back at the main program example for details). The parameter you pa@sst@ui t Message
winds up in thersg. wPar amobject in the main program, this is the program’s return code. By convention, main
programs return a zero when they successfully terminate. If you wanted to return an error code, you'd pass
error code as the parametemt®ost Qui t Message.

One embellishment you could make to thet Appl i cati on procedure is to add any application-specific
code needed to clean up the execution state before the program terminates. This could include flushing and
ing files, releasing system resources, freeing memory, etc. Another possibility is that you could open up a dia
box and ask the user if they really want to quit the program.

The other procedure you’ll need to supply to have a complete, functiteted\\orld program is thePai nt
procedure. Theai nt procedure in our Win32 application is responsible for drawing window data on the screer
Explaining exactly what goes into tRei nt procedure is actually the subject of much of the rest of this book and
it would be foolish to try and explain everything tRatnt must do in the few words available in this section. So
rather than try and anticipate questions with a lot of premature explanation, herasnth@rocedure without
too much ado:

/1 Paint:

/1

/1 This procedure handl es the "wm Pai nt" nessage.

/1 For this sinple "Hello World" application, this

/1 procedure sinply displays "Hello Wrld" centered in the
/1 application' s w ndow.

procedure Paint(hwnd: dword; wParam dword; | Paramdword); @odisplay;

var
hdc: dwor d; /1 Handle to video display device context
ps: w. PAI NTSTRUCT; /1 Used while painting text.
rect: w. RECT; /1l Used to invalidate client rectangle.
begi n Pai nt;

/1 When W ndows requests that we draw t he w ndow,
/1 fill in the string in the center of the screen.
/1 Note that all GDI calls (e.g., w Drawlext) nust
/1 appear within a BeginPaint..EndPaint pair.

w. Begi nPai nt (hwnd, ps);

Page 310

nov(eax, hdc);
w. Get CientRect(hwnd, rect);
w. Dr awText

(
hdc,

"Hello World!",

-1,

rect,

w. DT_SI NGLELI NE | w. DT_CENTER | w. DT_VCENTER

)
w. EndPai nt (hwnd, ps);

end Paint;

Thew. Begi nPai nt andw. EndPai nt procedure calls must bracket all the drawing that takes place raithe
procedure. These procedures set up a device contextthat Windows uses to determine where the output
should wind up (typically, the video display, but it could wind up somewhere else like on a printer). We’'ll have
lot more to say about these functions in the very next chapter, for now just realize that they’re a requiremen
order to draw on the window.

Thew. Get d i ent Rect API function simply returns the x- and y-coordinates of the outline of the client area
of the window. The client area of a window is that portion of the window where the application can draw (the c
ent area, for example, does not include the scroll bars, title bar, and border). This function returns the outling
the client area in & RECT object (therect parameter, in this case). Tha nt function retrieves this informa-
tion so it can print a string centered within the client area.

Thew. DrawText function is what does the real work as far as the nature of this program is concerned: this
the call that actually displays “Hello World!” within the window. Tlaebr awText function uses the following
prototype:

DrawText: procedure

(

hDC : dwor d;
| pString . string;
nCount : dwor d;
var | pRect : RECT;
uFor mat :dword
)
@tdcal | ;
@eturns("eax");
@xternal ("__inp__DrawText A@Q0");

The hDC parameter is a handle to the device context whepeawText is to put the text. In the call to
w. Dr awText appearing earlier, theai nt procedure passes in thec value returned by Begi nPai nt. The
| pSt ri ng parameter is a pointer to a zero-terminated sequence of ASCII characters (e.g., an HLA string obje:
ThencCount parameter specifies the number of characters to print from the string; if you pass -1 (as this call do
thenw. Dr awText will display all the characters up to the zero-terminating bytel pRect parameter specifies
a pair of (X,Y) coordinates that form a rectangle in the client argaawText will draw the text within this
rectangular area based on the value ofufhe mat parameter. Thevw. DT_SI NGLELI NE, w. DT_CENTER, and
w. VCENTER parameters tell. br awText to place a single line of text in the window, centered vertically and hori-
zontally within the rectangle supplied as tip®ect parameter.

Page 311

After the call tow. Dr awText , thePai nt procedure calls the. EndPai nt API function. This completes the
drawing sequence and it is at this point that Windows actually renders the text on the display device. Note tha
drawing must take place between th&egi nPai nt andw. EndPai nt calls. Additional calls to functions like
w. DrawText are not legal once you call EndPai nt . There are many additional functions you can use to draw
information in the client area of the window; we’ll start taking a look at some of these functions in the next cha
ter.

Here’s the completelelloWorld application:

/1 Hellowrld. hla:
/1
/1 The Wndows "Hello World" Program

program Hel | oWor | d;

#i ncl ude("wpa. hhf") /1 Standard w ndows stuff.

static
hl nst ance: dword; /1 "lnstance Handl e" supplied by Wndows.
WC: w. WNDCLASSEX; /1 Qur "wi ndow cl ass" dat a.
nsg: w. MBG, /1 W ndows nessages go here.
hwnd: dwor d; /1 Handl e to our w ndow.

readonly
C assNane: string := "HWNV nC ass"; /1 W ndow Cl ass Nane
AppCaption: string := "Hello Wrld Progrant; /1 Caption for Wndow

/1 The follow ng data type and DATA decl aration
/] defines the nessage handlers for this program

type
MsgProc_t: procedure(hwnd: dword; wParam dword; | Param dword);
MsgProcPtr _t:
record
MessageVal ue: dwor d;

MessageHndl r: MsgProc_t;

endr ecor d;

/1 The dispatch table:

11

/1 This table is where you add new nessages and nessage handl ers
/1 to the program Each entry in the table nust be a tMsgProcPtr
/1 record containing two entries: the nessage value (a constant,
/1 typically one of the wm***** constants found in w ndows. hhf)
/1 and a pointer to a "tMsgProc" procedure that will handle the
/1 message.

readonl y

Page 312

Di spat ch: MsgProcPtr _t; @ostorage;

MsgProcPtr _t
MsgProcPtr _t:[w VWM DESTROY, &QuitApplication 1,
MsgProcPtr _t:[w VWM _PAI NT, &Pai nt 1,

/'l Insert new nessage handl er records here.

MsgProcPtr _t:[O, NULL]; /1 This marks the end of the |ist.

/**/

[* APPLI CATI ON SPECI FI C CODE */

/**/

/1 QuitApplication:

/1

/1 This procedure handl es the "wm Destroy"” nessage.

/1 1t tells the application to termnate. This code sends

/1 the appropriate nmessage to the nmain progranmli s nessage | oop
/1 that will cause the application to terni nate.

procedure QuitApplication(hwnd: dword; wParam dword; | Param dword);
@odi spl ay;
begin Quit Application;

w. Post Qui t Message(0);

end QuitApplication;

/1 Paint:

/1

/1 This procedure handl es the "wm Pai nt" nessage.

/1 For this sinple "Hello World" application, this

/1 procedure sinply displays "Hello Wrld" centered in the
/1 application' s w ndow.

procedure Paint(hwnd: dword; wParam dword; | Paramdword); @odisplay;
var

hdc: dwor d; /1 Handl e to video display device context

ps: w. PAI NTSTRUCT; /1 Used while painting text.

rect: w. RECT; /1l Used to invalidate client rectangle.
begi n Pai nt;

/1 When W ndows requests that we draw t he w ndow,
/1 fill in the string in the center of the screen.
/1 Note that all GDI calls (e.g., w Drawlext) nust
/1l appear within a BeginPaint..EndPaint pair.

w. Begi nPai nt (hwnd, ps);

nov(eax, hdc);
w. Get ClientRect(hwnd, rect);

Page 313

w. Dr awText

(

hdc,

"Hell o Worl d!",

- 1'

rect,

w. DT_SI NGLELI NE | w. DT_CENTER | w. DT_VCENTER
)

w. EndPai nt (hwnd, ps);

end Paint;

/**/

/* End of Application Specific Code */

/**/

/1 The wi ndow procedure. Since this gets called directly from
/1 windows we need to explicitly reverse the paraneters (conpared
/1 to the standard STDCALL declaration) in order to nmake HLA' s

/1 Pascal calling convention conpatible with Wndows.

/1
/1 This is actually a function that returns a return result in
/1 EAX. If this function returns zero in EAX, then the event

/1 1oop term nates program executi on.

procedure WhdProc(hwnd: dword; uMsg:uns32; wParam dword; | Param dword);
@tdcall;
@odi spl ay;
@oal i gnst ack;

begi n WhdPr oc;

/1 uMsg contains the current nessage Wndows is passing along to

/1 us. Scan through the "Dispatch” table searching for a handler

/1l for this nmessage. |If we find one, then call the associated

/1 handl er procedure. |If we don't have a specific handler for this
/'l message, then call the default w ndow procedure handl er function.

mov(uMsg, eax);
nmov(&Di spatch, edx);
forever

mov((type MsgProcPtr _t [edx]).MessageHndlr, ecx);
if(ecx =0) then

/1 1f an unhandl ed nessage cones al ong,

/'l let the default w ndow handl er process the

/'l message. \Watever (non-zero) value this function
/1l returns is the return result passed on to the

/'l event | oop.

w. Def W ndowPr oc(hwnd, uMsg, wParam | Param);
exit WhdProc;

Page 314

elseif(eax = (type MsgProcPtr_t [edx]).MessageVal ue) then

/1 1f the current nmessage matches one of the val ues

/1 in the nmessage dispatch table, then call the

/1l appropriate routine. Note that the routine address
/1 is still in ECX fromthe test above.

push(hwnd); /'l (type tMsgProc ecx)(hwnd, wParam | Paran)
push(wParam); // This calls the associated routine after
push(| Param); // pushing the necessary paraneters.

call (ecx);

sub(eax, eax); // Return value for function is zero.
br eak;

endi f;
add(@i ze(MsgProcPtr_t), edx);

endf or;

end WhdPr oc;

/1l Here's the main program for the application.

begi n Hel | oWbr | d;

/1 Set up the w ndow class (wc) object:

mov(@i ze(w. WNDCLASSEX), wc.chbSize);

mov(w. CS_HREDRAW | w. CS_VREDRAW wc.style);
mov(&WhdProc, wc. | pf nwhdProc);

mov(NULL, wc.cbC sExtra);

mov(NULL, wc.cbWhdExtra);

mov(w. COLOR_W NDOW1, wc. hbr Background);
mov(NULL, wc. | pszMenuNane);

mov(C assName, wc. | pszC assNane);

/1l CGet this process' handle:
w. Get Mbdul eHandl e(NULL);
mov(eax, hlnstance);

mov(eax, wc. hlnstance);

/1l CGet the icons and cursor for this application:

w. Loadl con(NULL, val w. |Dl _APPLI CATION);
mov(eax, wc.hlcon);
mov(eax, wc. hlconSm);

w. LoadCur sor (NULL, val w. |1DC_ARROW);
mov(eax, wc. hCursor);

Page 315

/1 Okay, register this wi ndow with Wndows so it
/1 will start passing nessages our way. Once this
/1 is acconplished, create the wi ndow and display it.

w. Regi sterd assEx(wc);

w. Cr eat eW ndowEx

(
NULL,
Cl assNane,
AppCapt i on,
w. W5 OVERLAPPEDW NDOW
w. CW USEDEFAULT,
w. CW USEDEFAULT,
w. CW USEDEFAULT,
w. CW USEDEFAULT,
NULL,
NULL,
hl nst ance,
NULL

)

nov(eax, hwnd);

w. ShowW ndow(hwnd, w. SW SHOANORMAL) ;
w. Updat eW ndow(hwnd);

/1 Here's the event |oop that processes nessages
/1 sent to our window. On return from Get Message,
/1 break if EAX contains false and then quit the
/'l program

f orever

w. Get Message(nsg, NULL, 0, 0);
breakif(!'eax);

w. Tr ansl at eMessage(nsg);

w. Di spat chMessage(nsg);

endf or;

/1 The message handling inside Wndows has stored
/1 the programis return code in the wParamfield
/1 of the nmessage. Extract this and return it

/1 as the progranmis return code.

nov(nsg.wParam eax);
w. Exi t Process(eax);

end Hel | oWorl d;

5.7. Compiling and Running HelloWorld From the Command Line

The hla.exe command-line program automatically runs several different programs during the compilation o
an HLA source file. It runs the HLA compiler, propaflaparse.exe), it runs theml.exe (MASM, the Microsoft

Page 316

Macro Assembler) program to assemble.&sm file that HLA produce? it optionally runs thec.exe (resource
compiler) program if you specify anc files on the HLA command line, and it runs thek.exe program to link
all the object files together to produce an executablehlBtexe program is so flexible, it is all you will need to

use for small projectsHowever, there is one issue that you must consider when compiling GUI Windows appli
cations with HLA: by default, HLA generates console applications, not Windows applications. Since we're con
piling actual Windows applications, we need to tell HLA about this.

Telling HLA to compile Windows applications rather than console applications is very easy. All you've got t«
do is include the “-w” command line option as folléws

hla -w hell oWorl d. hl a

This command line option passes some information tdinkexe program so that it generates appropriate
object code for a Windows app versus a console app. That’s all there is to it! However, don't forget to include t
option or your application may misbehave.

To run thehelloWorld.exe application, you can either type “helloWorld” at the command line prompt or you
can double-click on thkelloWbrld.exe application’s icon. This should bring up a window in the middle of your
display screen heralding the phrase “Hello World!” You can quit the program by clicking on the application’
close box in the upper right hand corner of the window.

Although it is a relatively trivial matter to compile the “Hello World” program directly from the command
line, this book will always provide a makefile that you can use to completely compile any full program exampl
That way, you can always use the same command to compile trivial as well as complex Windows applicatio
The accompanying CD-ROM contains all the source code for each major project appearing in this book; w
each project appearing in its own subdirectory and each subdirectory containing a makefile that will build t
executable for that project. Following the plan from Chapters one and three, the makefile for the “Hello Worlc
application provide several options that interface with RadASM (see the next section) and provide the ability
do several different types of compiles from the command line. Here’s a makefile for the “Hello World” applice
tion:

buil d: Hel |l oWorl d. exe
buildall: clean Hell oWwrl d. exe

conpi l erc:
echo No Resource Files to Process!

synt ax:
hla -s HelloWwrld. hl a

run: Hell oWrl d. exe
Hel | oWorl d

cl ean:
delete /F /Q tnp

4. HLA can produce code for other assemblers like TASM, FASM, and Gas. In this book, however, we’ll assume the use of
MASM.

5. For larger projects, you will probably want to consider using a “make” program like Microsoft's NMAKE.EXE in order to gphed u

development process and ease maintenance of your code. This text will generally avoid the use of makefiles so that kbssehsgneu

have to be concerned about.

6. This book assumes that you've properly installed HLA and you've been able to compile small console-mode applications
like a text-based “Hello World” program. See the HLA documentation for more details on setting up HLA if you haven’t
done this already.

Page 317

del ete *.exe
del ete *.obj

delete *.1link
delete *.inc
del ete *.asm
del ete *. nmap

Hel | owbr 1 d. obj: Hel l oWworl d. hl a wpa. hhf
hla -p:tnmp -w -c Hell oWwrld

Hel | oWbrl d. exe: Hel |l oWworl d. hl a wpa. hhf
hla -p:tnmp -w Hel |l oWorl d

By default (that is, if you just type “make” at the command line) rifakefile will build the executable for the
HelloWbrld.exe program, if it is currently out of date. You may also specify command line options like “buildall”
or “clean” to do other operations. See Chapters one and three for more details on these options.

Whenever you consider the text-based version of the HLA “Hello World” program, this GUI version seem
somewhat ridiculous. After all, the text-based version only requires the following HLA code:

program hel | oWor | dText ;
#i nclude(“stdlib.hhf”)
begi n hel | oWor | dText ;

stdout.put(“Hello World!” nl);

end hel | oWor | dText ;

So why must the GUI version be so much larger? Well, for starters, the GUI version does a whole lot mc
than the text version. The text version prints “Hello World!” and that’s about it. The GUI version, on the othe
hand, opens up a window that you can move around on the screen, resize, open up a system menu, minir
maximize, and close. Today, people have been using Windows and Macintosh applications for so long that t
take the effort needed to write such “trivial” code for granted. Rest assured, doing what this simple GUI “Hel
World” application does would be a tremendous amount of work when running under an operating system |
Microsoft's old DOS system where all the graphics manipulation was totally up to the application programme
What the GUI “Hello World” application accomplishes in fewer than 300 lines of code would take thousands
lines of code under an OS like DOS.

5.8: Compiling and Running HelloWorld from RadASM

The HelloWorld directory on the accompanying CD-ROM contains the RadASM “.rap” (RadAsm Project
file and the makefile that RadASM can use to build this file. JustHelkdWorld.rap into RadASM and select
“Build” or “Run” from the “Make” menu.

5.9: Goodbye World!

Well, we've just about beat théelloWorld program into the ground. But that's good. Because you'll discover
in the very next chapter than most Windows programs we write will not be written from scratch. Instead, we
take some other program (usuathglloWorld) and tweak it according to our needs. So if you just skimmed

Page 318

through this material and said “uh-huh” and “oh-yeah” but you didn’t really follow everything here, go back an
read it again (and again, and again, and...). This chapter is truly the basis of everything that follows.

Page 319

