Chapter 3: The C - Assembly Connection

3.1: Why are We Reading About C?

You probably purchased this book to learn assembly language programming under Windows (after all, th:
what the title promises). This chapter is going to spend considerable time talking about the C programming |
guage. Now assembly language programmers fall into two camps with respect to the C programming languz
those who already know it and don’t really need to learn a whole lot more about C, and those who don’t know
and probably don’t want to learn it, either. Unfortunately, as the last chapter points out, the vast majority of W
dows programming documentation assumes that the reader is fluent in C. This book cannot begin to provide
the information you may need to write effective Win32 applications; therefore, this chapter does the next b
thing - it describes how you can translate that C documentation for use in your assembly language programs

This chapter contains two main sections. The first section provides a basic description of the C programm
language for those readers who are not familiar with the C/C++ programming language. It describes vari
statements in C/C++ and provides their HLA equivalents. Though far from a complete course on the C progre
ming language, this section will provide sufficient information to read some common Win32 programmin
examples in C and translate them into assembly language. Experienced C/C++ programmers can elect to
this section (though if you're not comfortable with HLA, you may want to skim over this section because it wil
help you learn HLA from a C perspective). The second portion of this chapter deals with the Win32 interface &
how C passes parameter data to and from Windows. Unless you're well-versed in compiler construction, mi
language calling sequences, and you've examined a lot of compiler code, you'll probably want to take a look
this material.

3.2: Basic C Programming From an Assembly Perspective

The C programming language is a member of the group of programming languages knowmges dhiee
or procedural programming languages. Languages in this family include FORTRAN, BASIC, Pascal (Delphi
Kylix), Ada, Modula-2, and, of course, C. Generally, if you've learned to write programs in one of these lat
guages, it’s relatively easy to learn one of the other languages in the same category. When you attempt to le:
new language from a different class of languages (i.e., you spribghamming paradigms), it's almost like
you're learning to program all over again; learning a new language that is dissimilar to the one(s) you alrec
know is a difficult task. A recent trend in programming language design has bégbridéanguage. A hybrid
language bridges the gap between two different programming paradigms. For example, the C++ language
hybrid language that shares attributes common to both procedural/imperative languages and object-oriented
guages. Although hybrid languages often present some compromises on one side or the other of the gulf
span, the advantage of a hybrid language is that it is easy to learn a new programming paradigm if you're alre
familiar with one of the programming methodologies that the language presents. For example, programir
who already know find it much easier to learn object-oriented programming via C++ rather than learning t
object-oriented programming paradigm from scratch, say by learning Smalltalk (or some other “pure” object-o
ented language). So hybrid languages are good in the sense that they help you learn a new way of program
by leveraging your existing knowledge.

The High Level Assembler, HLA, is a good example of a hybrid programming language. While a true asse!
bly language, allowing you to do just about anything that is possible with a traditiohal{@vel) assembler,
HLA also inherits some syntax and many other features from various high-level imperative programming la
guages. In particular, HLA borrows several control and data structures from the C, Pascal, Ada, and Modul
programming languages. The original intent for this design choice was to make it easier to learn assembly
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guage if you already knew an high level language like Pascal or C/C++. By borrowing heavily from the synt:
of these high-level programming languages, a new assembly language programmer could learn assembly
gramming much more rapidly by leveraging their C/C++/Pascal knowledge during the early phase of the
assembly education.

Note, however, that the reverse is also true. Someone who knows HLA well but doesn’t know C can use tt
HLA knowledge to help them learn the C programming language. HLAs high level control structures ar
strongly based on languages like C and Modula-2 (or Ada); therefore, if you're familiar with HLA's high leve
control structures, then learning C’s control structures will be a breeze. The sections that immediately follow t
this concept to teach some basic C syntax. For those programmers who are not comfortable or familiar v
HLA's high level control structures, the following subsections will also describe how to convert between “pure
assembly language and various C control structures. The ultimate goal here is to show you how to conve!
code to HLA assembly code; after all, when reading some Win32 programming documentation, you’re going
need to convert the examples you're reading in C into assembly language. Although it is always possible (;
very easy) to convert any C control structure directly into assembly language, the reverse is not true. That is,
possible to devise some control flow scheme in assembly language that does not translate directly into a |
level language like C. Fortunately, for our purposes, you generally won't need to go in that direction. So ev
though you're learning about C from an assembly perspective (that is, you're being taught how to read C code
studying the comparable assembly code), this is not a treatise on converting assembly into C (which can be a
difficult task if the assembly code is not well structured).

3.2.1: C Scalar Data Types

The C programming language provides three basic scalar datd: typegers, and a couple floating point
types. Other data types you'd find in a traditional imperative programming language (e.g., character or bools
values) are generally implemented with integer types in C. Although C only provides three basic scalar type:
does provide several variations of the integer and floating point types. Fortunately, every C data type m
directly to an HLA structured data type, so conversion from C to HLA data types is a trivial process.

3.2.1.1: C and Assembler Integer Data Types

The C programming language specifies (up to) four different integer gtpes(which, despite its name, is
a special case of an integer valwprt, int, andl ong. A few compilers support a fifth size, “long long”. In
general, the C programming language does not specify the size of the integer values; that decision is lef
whomever implements a specific compiler. However, when working under Windows (Win32), you can make tl
following assumptions about integer sizes:

e char - one byte
* short - two bytes
e int, long - four bytes

1. For our purposes, a scalar data type is a primitive or atomic data type; one that the language treats as a singe’'unit, that
composed of smaller items (like, say, elements of an array or fields of a structure).
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The C programming language also specifies two types of integers: signed and unsigned. By default, all ir
ger values are signed. You can explicitly specify unsigned by prefacing one of these types with the keywc
unsi gned. Therefore, C’s integral types map to HLAs types as shown in Table 3-1.

Table 3-1. Integer Type Correspondence Between HLA and C

C Type Corresponding HLA Types
char char, byte, int8
short word, int16
int dword, int32
long dword, int32
long long gword, int64
unsigned char char, byte, uns8

unsigned short

word, unsl16

unsigned

dword, uns32

unsigned int

dword, uns32

unsigned long

dword, uns32

unsigned long long

gword, uns64

a.Some compilers have an option that lets you specify the use of un-
signed char as the default. In this case, the corresponding HLA type is
uns8.

Generic integer literal constants in C take several forms. C uses standard decimal representation for bas
integer constants, just like most programming languages (including HLA). For example, the sequence of digi

128

represents the literal integer constant 128.

If a literal integer constant begins with a zero (followed by one or more octal digits in the range 0..7), then
treats the literal constant as a base-8 (octal) value. HLA doesn’t support octal constants, so you will have to n
ually convert such constants to decimal or hexadecimal prior to using them in an assembly language progr
Fortunately, you rarely see octal constants in modern C programs (especially in Win32 programs).

C integer literal constants that begin with “Ox” are hexadecimal (base-16) constants. You will replace t
“Ox” prefix with a “$” prefix when converting the value from C to HLA. For example, the C literal constant
“Ox1234ABCD” becomes the HLA literal constant “$1234ABCD”.

C also allows the use of an “L” suffix on a literal integer constant to tell the compiler that this should be
long integer value. HLA automatically adjusts all literal constants to the appropriate size, so there is no neec
tell HLA to extend a smaller constant to a long (32-bit) value. If you encounter an “L” suffix in a C literal con
stant, just drop the suffix when translating the value to assembly.
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3.2.1.2: C and Assembly Character Types

As the previous section notes, C treats character variables and constants as really small (one-byte) int
values. There are some non-intuitive aspects to using C character variables that can trip you up; hence the
ence of this section.

The first place to start is with a discussion of C and HLA literal character constants. The two literal forms &
quite similar, but there are just enough differences to trip you up if you're not careful. The first thing to note
that both HLA and C treat a character constant differently than a string containing one character. We’'ll co\
character strings a little later in this chapter, but keep in mind that character objects are not a special case
string object.

A character literal constant in C and HLA usually consists of a single character surrounded by apostroy
characters. E.g., ‘a’is a character constant in both of these languages. However, HLA and C differ when dea
with non-printable (i.e., control) and a couple of other characters. C usssap@character sequenceto repre-
sent the apostrophe character, the backslash character, and the control characters. For example, to represe
apostrophe character itself, you'd use the C literal constant \”. The backslash tells C to treat the following val
specially; in this particular case, the backslash tells C to treat the following apostrophe character as a reg
character rather than using it to terminate the character constant. Likewise, you use ‘\\' to tell C that you war
single backslash character constant. C also uses a backslash followed by a single lowercase alphabetic cha
to denote common control characters. Table 3-2 lists the escape character sequences that C defines.

Table 3-2: C Escape Character Sequences

(S:eEque?][;Z Control Character
\n’ New line (carriage return/line feed under Windows,
though C encodes this as a single line feed)
Ar’ Carriage return
\b’ Backspace
\a’ Alert (bell character, control-G)
Af Form Feed (control-L)
At Tab character (control-I)
v’ Vertical tab character (control-k)

C also allows the specification of the character's numeric code by following a backslash with an octal or he:
decimal constant in the range 0..0xff, e.g., \Ox1b'.

HLA does not support escape character sequences using the backslash character. Instead, HLA uses a |
sign (‘#) followed immediately by a numeric constant to specify the ASCII character code. Table 3-3 shows hc
to translate various C escape sequences to their corresponding HLA literal character constants.
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Table 3-3:  Converting C Escape Sequences to HLA Character Constants

C Escape HLA
P Character Description
Sequence
Constant
\n’ #%a #%d Note that the end of line sequence under Windows is not a character, but rather ¢
string consisting of two characters. If you need to represent newline with ja sin-
gle character, using a linefeed (as see does) whose ASCII code is $A; linefeed
is also defined in the HLA Standard Library as stdio.lf. Note that the “nl” sym-
bol an HLA user typically uses for newline is a two-character string containing
line feed followed by carriage return.
‘\r #$d Carriage return character. This is defined in the HLA Standard Library as
stdio.cr.
‘b’ #8 Backspace character. This is defined in the HLA Standard Library as stdip.bs.
\a’ #7 Alert (bell) character. This is defined in the HLA Standard Library as stdiolbell.
Af’ #$c Form feed character.
‘\t #9 Tab character. This is defined in the HLA Standard Library as stdio.tab.
v’ #3b Vertical tab character.

Because C treats character values as single-byte integer values, there is another interesting aspect to cha
values in C - they can be negative. One might wonder what “minus ‘z’” means, but the truth is, there really is
such thing as a negative character; C simply uses signed characters to represent small integer values in the
-128..+127 (versus unsigned characters that represent values in the range 0..255). For the standard sev
ASCII characters, the values are always positive, regardless of whether you're using a signed character o
unsigned character object. Note, however, that many C functions return a signed character value to specify
tain error conditions or other states that you cannot normally represent within the ASCII character set. For ex:
ple, many functions return the character value minus one to indicate end of file.

3.2.1.3: C and Assembly Floating Point (Real) Data Types

The C programming language defines three different floating point 8izasdouble, andlong double?.
Like the integer data type sizes, the C language makes no guarantees about the size or precision of floating
values other than to claim thdduble is at least as large #sat andlong double is at least as large asuble.
However, while nearly every C/C++ compiler that generates code for Windows uses the same sizes for integ
(8, 16, and 32 bits fashar, short, andint/long), there are differences in the sizes of floating objects among com-
pilers. In particular, some compilers use a 10-byte extended precision fornaigf@ouble (e.g., Borland)
while others use an eight-byte double precision format (e.g., Microsoft). Fortunately, all (reasonable) compils
running under Windows use the IEEE 32-bit single-precision formdlkotirand the IEEE 64-bit double-preci-
sion format fordouble. If you encounter &éng double object in C code, you will have to check with the com-

2. Only recent versions of the C programming language support the “long double” floating point type.
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piler’s vendor to determine the size of the object in order to convert it to assembly language. Of course, for m.
applications it won'’t really matter if you go ahead and use a 10-byte real value whenever you endongter a
double object. After all, the original programmer is probably expecting something bigger tivabla object
anyway. Do keep in mind, however, that some algorithms involving real arithmetic may not be stable when r
with a different floating point size other than the sized used when they were developed.

T shows the correspondence between C/C++ floating point data types and HLA's floating point data types

Table 3-4. Real Type Correspondence Between C and Assembly

Corresponding
C Real Type HLA Type Comment
float real32 32-bit IEEE format floating point value.
double real64 64-bit IEEE format floating point value.
long double real64 64-bit IEEE format floating point value on certain com-
pilers (e.g., Microsoft).
real80 80-bit IEEE format floating point value on certain com-
pilers (e.g., Borland)

C and HLA floating point literal constants are quite similar. They may begin with an optional sign, followe
by one or more decimal digits. Then you can have an optional decimal point followed by another option
sequence of decimal digits; following that, you can have an optional exponent specified as an ‘e’ or ‘E’, .
optional sign, and one or more decimal digits. The final result must not look like an integer constant (i.e., 1
decimal point or an exponent must be present).

C allows an optional “F” suffix on a floating point constant to specify single precision, e.g., 1.2f. Similarly
you can attach an “L” suffix to a float value to indidatey double, e.g., 1.2L. By default, C literal floating point
constants are always double precision values. HLA always maintains all constants as 80-bit floating point val
internally and converts them to 64 or 32 bits as necessary, so there is no need for such a suffix. So by drop
the “F” or “L” suffix, if it is present, you can use any C floating point literal constant as-is in the HLA code.

3.2.2: C and Assembly Composite Data Types

C provides four major composite (or aggregate) data types: arrays, structures, unions, and pointers. (
adds the class types well. A composite type is a type that is built up from smaller types (e.g., an array is a col
tion of smaller objects, each element having the same type as all other elements in the array). In the follow
sub-sections, we’ll explore these composite data types in C and provide the corresponding type in HLA.

As is the case throughout this chapter, this section assumes that you already know assembly language
may not know C. This section provides the correspondence between C and HLA, but doesn’t attempt to teach
how to do things like access an array in assembly language; the previous chapter already covered that mater
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3.2.2.1: C and Assembly Array Types

Since HLAs syntax was based on the C and Pascal programming languages, it should come as no surj
that array declarations in HLA are very similar to those in C. This makes the translation from C to HLA ver
easy.

The syntax for an array declaration in C is the following:

el enent Type arrayNane| el enents | <<additional dinension infor-
nmat i on>>;

elementType is the type of an individual element of the arrayayName is the name of the array objeete-
mentsis an integer constant value the specifies the number of array elements. Here are some sample C array
larations:

int intArray[4];

char grid[3][3]; [/ 3x3 two-di nensional array
doubl e flts[16];

user Type userDatal 2][2][ 2]

In HLA, multiple dimension arrays use a comma-delimited list to separate each of the maximum boun
(rather than using separate sets of brackets). Here are the corresponding declarations in HLA:

intArray :int32] 4 ];
grid :char[ 3, 3];
flts :real 64[ 16] ;
userData :userType[ 2,2, 2];

Both C and HLA index arrays from zeronel, wheren is the value specified as the array bound in the declara-
tion.

C stores arrays in memory using row-major ordering. Therefore, when accessing elements of a multi-dim
sional array, always use the row-major ordering algorithm TbeeArt of Assembly Language for details if
you're unfamiliar with accessing elements of a multi-dimensional array in assembly language).

In C, it is possible to provide an initial value for an array when declaring an array. The following C examp
demonstrates the syntax for this operation:

int iArray[4] = {1,2,3,4};

HLA also allows initialization of array variables, but only for static objects. Here’s the HLA version of this C
code:

static
iArray :int32[4] :=1[1,2,3,4];

C allows the same syntax for an array initialization to automatic variables. However, you cannot initialize
automatic variable at compile time (this is true for C and HLA); therefore, the C compiler automatically emit
code to copy the data from some static memory somewhere into the automatic array, e.g., a C declaration like
following appearing in a function (i.e., as an automatic local variable):

int autoArray[4] = {1, 2,3, 4};
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gets translated into machine code that looks something like the following:

readonly
staticlnitializebData :dword :=[1, 2, 3,4];

var
aut oArray: int32[4];

nov( &staticlnitializerData, esi );
| ea( edi, autoArray );

nmov( 4, ecx );

rep. movsd();

(yes, compilers really do generate code like this). This code is pretty disgusting. If you see an automatic at
variable with an initializer, it's probably a better idea to try and figure out if you really need a new copy of the in
tial data every time you enter the function.

3.2.2.2: C and Assembly Record/Structure Types

C implements the equivalent of HLA'S records usingstheuct keyword. Structure declarations in C look
just like standard variable declarations sandwiched inside a “struct {...}" block. Conversion to HLA is relativel
simple: just stick the HLA equivalent of those field declarations ktar d. . endr ecor d block. The only point
of confusion is C’s syntax for declaring tags, types, and variables ofssonna type.

C allows you to declare structure variables and types several different ways. First, consider the followi
structure variable declaration:

struct
{
int fieldA
float fieldB
char fieldC,
}
struct Var;

Assuming this is a global variable in C (i.e., not within a function) then this creates a static wariable/ar
that has three fieldstruct Var.fiel dA, structVar.fiel dB, andstructVar.fiel dC. The corresponding
HLA declaration is the following (again, assuming a static variable):

static
structVar:
record
fieldA :int32;
fieldB :real 32;
fieldC :char;
endr ecord;
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In an HLA program, you'd access the fields of the structVar variable using the exact same syntax as C, spe
cally: struct Var. fiel dA, struct Var. fiel dB, andstruct Var. fi el dC.

There are two ways to declare structure types in C: usipgdef and usingag fields. Here’s the version
using C'st ypedef facility (along with a variable declaration of the structure type):

typedef struct

{
int fieldA
float fieldB
char fieldC
}

struct Type;

struct Type struct Var;

Once again, you access the fieldssofuct Var asstructVar. fiel dA, structVar.fiel dB, andstr uct -
Var. fiel dC

Thet ypedef keyword was added to the C language well after it’s original design. In the original C language
you'd declare a structure type using a structure tag as follows:

struct structType

{
int fieldA

float fieldB
char fieldC
} /* Note: you could actually declare struct Type vari ables here */ ;

struct structType strucVar,

HLA provides a single mechanism for declaring a record type - by declaring the type in HLA'S type sectiol
The syntax for an HLA record in the type section takes this form:

type
struct Type:
record
fieldA :int32;
fieldB :real 32
fieldC :char;
endr ecor d;
static

structVar :structType;

C also allows the initialization of structure variables by using initializers in a variable declaration. The syi
tax is similar to that for an array (i.e., a list of comma separated values within braces). C associates the value
the list with each of the fields by position. Here is an example @t thet var declaration given earlier with an

initializer:

struct structType structVar = { 1234, 5.678, ‘9 };
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Like the array initializers you read about in the previous section, the C compiler will initialize these fields :
compile time if the variable is a static or global variable. however, if it's an automatic variable, then the C cor
piler emits code to copy the data into the structure upon each entry into the function defining the initialized st
ture (i.e., this is an expensive operation).

Like arrays, HLA allows the initialization of static objects you definesnaaic, storage, Orreadonly
section. Here is the previous C example translated to HLA:

static
structVar :structType := structType:[1234, 5.678, ‘9 ];

One major difference between HLA and C with respect to structures is the alignment of the fields within tl
structure. By default, HLA packs all the fields in a record so that there are no extra bytes within a structure.
struct Type structure, for example, would consume exactly nine bytes in HLA (four bytes each for #2e
andr eal 32 fields and one byte for thehar field). C structures, on the other hand, generally adhere to certain
alignment and padding rules. Although the rules vary by compiler implementation, most Win32 C/C++ compi
ers align each field of a struct on an offset boundary that is an even multiple of that field’s size (up to four byte
In the currenstt ruct Type example,fi el dAwould fall at offset zerd,i el dB would fall on offset four within the
structure, andi el dC would appear at offset eight in the structure. Since each field has an offset that is an ev
multiple of the object’s size, C doesn’t manipulate the field offsets for the record. Suppose, however, that
have the following C declaration in our code:

typedef struct

{
char fieldC

int fieldA
short fieldD
float fieldB

struct Typez,;

If C, like HLA, didn't align the fields by default, you'd firfd el dC appearing at offset zerbi, el dA at offset 1,

fi el dD at offset five, andi el dB at offset seven. Unfortunately, these fields would appear at less than optima
addresses in memory. C, however, tends to insert padding between fields so that each field is aligned at an «
within the structure that is an even multiple of the object’s size (up to four bytes, which is the maximum fie
alignment that compilers support under Win32). This padding is generally transparent to the C programm
however, when converting C structures to assembly language records, the assembly language programmer
take this padding into consideration in order to correctly communicate information between an assembly |
guage program and Windows. The traditional way to handle this (in assembly language) has been to explic
add padding fields to the assembly language structure, e.g.,

type
struct TypeZ2:
record
fieldC :char;
pad0 :byte[3]; // Three bytes of padding.

fieldA :int32;
fieldD :intl6;

padl cbyte[2]; // Two bytes of padding.
fieldB :real 32;
endr ecor d;
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HLA provides a set of features that automatically and semi-automatically align record fields. First of all, you ¢
use the HLAal i gn directive to align a field to a given offset within the record; this mechanism is great for pro-
grams that need absolute control over the alignment of each field. However, this kind of control is not necess
when implementing C records in assembly language, so a better approach is to use HLA's automatic record |

alignment facilities. The rules for C/C++ (under Windows, at least) are pretty standard among compilers; th
rule is this: each object (up to four bytes) is aligned at a starting offset that is an even multiple of that objec
size. If the object is larger than four bytes, then it gets aligned to an offset that is an even multiple of four byt
In HLA, you can easily do this using a declaration like the following:

type
struct TypeZ2:
record[ 4:1];
fieldC :char;
pad0 :byte[3]; // Three bytes of padding.

fieldA :int32;
fieldD :int1l6;

padl cbyte[2]; // Two bytes of padding.
fieldB :real 32;
endr ecor d;

The “[4:1];” appendage to the record keyword tells HLA to align objects between one and four bytes on their n
ural boundary and larger objects on a four-byte boundary, just like C. This is the only record alignment opti
you should need for C/C++ code (and, in fact, you should always use this alignment option when converting
C++ structs to HLA records). If you would like more information on this alignment option, please see the HL.
reference manual.

Specifying the field alignment via the “[4:1];” option only ensures that each field in the record starts at &
appropriate offset. It does not guarantee that the record’s length is an even multiple of four bytes (and mos
C++ compilers will add padding to the end aftauct to ensure the length is an even multiple of four bytes).
However, you can easily tell HLA to ensure that the record’s length is an even multiple of four bytes by adding
align directive to the end of the field list in the record, e.g.,

type
struct TypeZ2:
record[ 4:1];
fieldC :char;
pad0 :byte[3]; // Three bytes of padding.

fieldA :int32;
fieldD :intl6;

padl cbyte[2]; // Two bytes of padding.
fieldB :real 32;
align(4);

endr ecor d;

Another important thing to remember is that the fields of a record or structure are only properly aligned
memory if the starting address of the record or structure is aligned at an appropriate address in memory. Spe
ing the alignment of the fields in an HLA record does not guarantee this. Instead, you will have to use HL/
al i gn directive when declaring variables in your HLA programs. The best thing to do is ensure that an instan

3. For those who are interested in using the align directive and other advanced record field alignment facilities, please consult
the HLA reference manual.
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of a record (i.e., a record variable) begins at an address that is an even multiple of f6uioytean do this by
declaring your record variables as follows:

static
align(4); // Align followi ng record variable on a four-byte address in nenory.
recVar »struct Type2,

3.2.2.3: C and Assembly Union Types

A C union is a special type of structure where all the fields have the same offset (in C, the offset is zero.
HLA you can actually select the offset though the default is zero). That is, all the fields of an instance of a un
overlay one another in memory. Because the fields of a union all have the same starting address, there al
issues regarding field offset alignment between C and HLA. Therefore, all you need really do is directly conv
the C syntax to the HLA syntax for a union declaration.

In C, union type declarations can take one of two forms:

uni on uni onTag

{

<<fields that |look like variable declarations>>
} <<optional union variable declarations>>;

t ypedef union

{
}

<<fields that | ook |ike variable decl arations>>

uni onTag2; /* The type declaration */

You may also declanei on variables directly using syntax like the following:

uni on

{
}

<< fields that | ook |ike variable declarations >>
uni onVari abl el, uni onVari abl e2, uni onVari abl e3

uni on uni onTag uni onVar 3, uni onVar 4;
uni onTag2 uni onVar 5;

In HLA, you declare a union type in HLAIg/pe section using theni on/ enduni on reserved words as fol-
lows:

type
uni onType:
uni on
<< fields that ook |ike HLA variable declarations >>
enduni on;

4. Technically, you should align a record object on a boundary that is an even multiple of the largest field’s size, up to four
bytes. Aligning record variables on a four-byte boundary, however, will also work.
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You can declare actual HLA union variables using declarations like the following:

st orage
uni onVar 1
uni on
<< fields that | ook |ike HLA variable declarations >>
enduni on;

uni onvar 2: uni onType;

The size of a union object in HLA is the size of the largest field inrthen declaration. You can force the
size of the union object to some fixed size by placing an align directive at the end of the union declaration. |
example, the following HLA type declaration defines a union type that consumes an even multiple of four byte

type
uni on4_t:

uni on
b : bool ean
c :char[3];
w :wor d;
align(4);

enduni on;

Without the “align(4);” field in this union declaration, HLA would only allocate three bytes for a object of type
uni on4_t because the single largest fieldciswhich consumes three bytes. The presence of the “align(4);”
directive, however, tells HLA to align the end of the union on a four-byte boundary (that is, make the union’s si
an even multiple of four bytes). You’'ll need to check with your compiler to see what it will do with unions, bu
most compilers probably extend the union so that it's size is an even multiple of the largest scalar (e.g., n
array) object in the field list (in the example above, a typical C compiler would probably ensure that and instar
of theuni on4_t type is an even multiple of two bytes long).

As for records, the fact that a union type is an even multiple of some size does not guarantee that a variab
that type (i.e., an instance) is aligned on that particular boundary in memory. As with records, if you want
ensure that a union variable begins at a desired address boundary, you need to stick an align directive befor
declaration, e.g.,

var
align(4);
u :union4d_t;

3.2.2.4: C and Assembly Character String Types

The C/C++ programming language does not support a true string type. Instead, C/C++ uses an array of c
acters with a zero terminating byte to represent a character string. C/C++ uses a pointer to the first charact
the character sequence as a “string object”. HLA defines a true character string type, though it’s internal rej
sentation is a little different than C/C++'s. Fortunately, HLAs string format is upwards compatible with the
zero-terminated string format that C/C++ uses, so it’'s very easy to convert HLA strings into the C/C++ form
(indeed, the conversion is trivial). There are a few problems going in the other direction (at least, at run time).
a special discussion of HLA versus C/C++ strings is in order.
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Character string declarations are somewhat confused in C/C++ because C/C++ often treats pointers tc
object and arrays of that same object type equivalently. For example, in an arithmetic expression, C/C++ d
not differentiate between the use afrar * object (a character pointer) and an array of characters. Because o
this syntactical confusion in C/C++, you’ll often see strings in this language declared one of two different way
as an array of characters or as a pointer to a character. For example, the following are both typical string vari.
declarations in C/C++:

char stringAl 256 ]; // Holds up to 255 characters plus a zero termnating byte.
char *stringB; /1 Must allocate storage for this string dynamically.

The big difference between these two declarations is that thegA declaration actually reserves the storage
for the character string while tkeri ngB declaration only reserves storage for a pointer. Later, when the pro-
gram is running, the programmer must allocate storage for the string associatedrwiidB (or assign the
address of some previously allocated stringtta ngB). Interestingly enough, once you have two declarations
like st ri ngAandst ri ngBin this example, you can access characters in either string variable using either point
or array syntax. That is, all of the following are perfectly legal given these declaratiosts ifagA and
stringB (and they all do basically the same thing):

char ch;

ch = stringAli]; /1l Access the char at position i in stringA
ch = *(stringB + i); /1l Access the char at positioni in stringB
ch = stringB[i]; /1l Access the char at positioni in stringB
ch = *(stringA + i); /1l Access the char at position i in stringA

String literal constants in C/C++ are interesting. Syntactically, a C/C++ string literal looks very similar to a
HLA string literal: it consists of a sequence of zero or more characters surrounded by quotes. The big differe
between HLA string literals and C/C++ string literals is that C/C++ uses escape sequences to represent cot
characters and non-graphic characters within a string (as well as the backslash and quote characters). HLA
not support the escape character sequences (see the section on character constants for more details on ¢
escape character sequences). To convert a C/C++ string literal that contains escape sequences into an HLA
acter string, there are four rules you need follow:

* Replace the escape sequence \” with ““. HLA uses doubled-up quotes to represent a single quote wit
a string literal constant.

* Replace the escape sequence \\ with a single backslash. Since HLA doesn’t use the backslash as a s
character within a string literal, you need only one instance of it in the string to represent a single bac
slash character

» Convert special control-character escape sequences, e.g., \n, \r, \a, \b, \t, \f, and \v, to their correspon
ASCII codes (see Table 3-3) and splice that character into the string using HLA's #nn character liter;
e.g., the C/C++ string “hello\nworld\n” becomes the following:

“hel |l 0” #3$d #%a “worl d” #3d #3%a /I HLA automatically splices all
t his together.

*  Whenever a C/C++ numeric escape sequence appears in a string (e.g., \Onn or \OXnn) then simply con
the octal constant to a hexadecimal constant (or just use the hexadecimal constant as-is) along with tr
HLA #$nn literal constant specification and splice the object into the string as before. For example, the
C/C++ string “hello\OxaworldOxa” becomes:
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“hel |l 0” #%a “worl d” #$a

Whenever a C/C++ compiler sees a string literal constant in a source file, the compiler will allocate stora

for each character in that constant plus one extra byte to hold the zero terminafirambyts# course, the com-
piler will initialize each byte of this storage with the successive characters in the string literal constant. C/C-
compilers will typically (though not always) place this string they’ve created in a read-only section of memor
Once the compiler does this, it replaces the string literal constant in the program with the address of the first ¢
acter it has created in this read-only memory segment. To see this in action, consider the following C/C++ ct
fragment:

char* str;

str = “Sone Literal String Constant”;

This does not copy the character sequence “Some Literal String Constant'rinténstead, the compiler
creates a sequence of bytes somewhere in memory, initializes them with the characters in this string (plus a
terminating byte), and then stores the address of the first character of this sequencetintohifiacter pointer
variable. This is very efficient, as C/C++ needs to only move a four-byte pointer around at run-time rather tr
moving a 29 byte sequence.

The HLA language provides an explisitri ng data type. Internally, however, HLA represents strings using

a four-byte pointer variable, just as C/C++ does. There is an important difference, however, between the type
data that an HLA string variable references and a C/C++ character pointer references: HLA includes some a
tional information with its string data: specifically, a length field and a maximum length field. Like C/C++ string
objects, the address held in an H&t#A i ng variable points at the first character of the character string (and HLA
strings also end with a zero terminating byte). Unlike C/C++ however, the four bytes immediately preceding t
first character of the string contain the current length of the string (as3mvalue). The four bytes preceding

the length field contain the maximum possible length of the string (that is, how much memory is reserved for 1
string variable, which can be larger than the current number of characters actually found in the string). Figure
1 shows the HLA string format in memory.

Figure 3-1: HLA String Format in Memory

| || | || | |
MaxLen(];th Length A|B|[C|D]|\O
| 1 1 |

Pointer to string data
| | |

The interesting thing to note about HLA strings is that they are downwards compatible with C/C++ string
That is, if you've got a function, procedure, or some other piece of code that operates on a C/C++ string, you

generally pass it a pointer to an HLA string and the operation will work as eX?)ed’deid was done by design

5. Some compilers may actually allocate a few extra bytes of padding at the end of the string to ensure that the literal string
constant’s length is an even multiple of four bytes. However, this is not universal among compilers so don’t count on it.

6. The only ‘gotcha’ is that you cannot expect the string to remain in a consistent HLA format if your code that operates on C/
C++ strings makes any modifications to the HLA string data.
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and is one of the reasons HLA interfaces so well with the Win32 API. The Win32 API generally expects C/CA
zero terminated strings when you pass it string data. Usually, you can pass an HLA string directly to a Win
API function and everything will work as expected (few Win32 API function calls actually change the strin
data).

Going the other direction, converting a C/C++ string to an HLA string, is not quite as trivial (though still eas
to accomplish using appropriate code in the HLA Standard Library). Before describing how to convert C/CH
strings to the HLA format, however,gimportant to point out that HLA is assembly language and assembly lan-
guage is capable of working with any string format you can dream up (including C/C++ strings). If you've g
some code that produces a zero-terminated C/C++ stringloydihave to convert that string to an HLA string
in order to manipulate it within your HLA programs. Although the HLA string format is generally more efficient
(faster) because the algorithms that process HLA strings can be written more efficiently, you can write your o
zero-terminated string functions and, in fact, there are several common zero-terminated string functions fount
the HLA Standard Library. However, as just noted, HLA strings are generally more efficient, so if you're goin
to be doing a bit of processing on a zero terminated string, it's probably wise to convert it to an HLA string firs
On the other hand, if you're only going to do one or two trivial operations on a zero-terminated string that tl
Win32 API returns, you're better off manipulating it directly as a zero-terminated string and not bothering wit
the conversion (of course, if convenience is your goal rather than efficiency, it's probably always better to conv
the string to the HLA string format upon return from a Win32 API call just so you don’t have to work with twa
different string formats in your assembly code). Of course, the other option open to you is to work exclusive
with zero-terminated strings in your assembly code (though the HLA Standard Library doesn’t provide anywhe
near the number of zero-terminated string functions).

The purpose of this chapter is to explain how to convert C/C++ based Windows documentation to a form st
able for assembly language programmers and describe how assembly language programmers can call tr
based functions that make up the Win32 API set. Therefore, we won't get into the details of converting stri
function calls in C/C++ to their equivalent (or similar) HLA Standard Library calls. Rest assured, the HLA Star
dard Library provides a much richer set of string functions than does the C Standard Library; so anything y
find someone doing in C/C++ can be done just as easily (and usually more efficiently) using an HLA Stand:
Library function. Please consult the HLA Standard Library documentation for more details. In this sectio
we’ll simply cover those routines that are necessary for converting between the two different string formats &
copying string data from one location to another.

In C/C++ code, it is very common to see the program declare a string object (character pointer) and initial
the pointer with the address of a literal string constant all in one operation, e.g.,

char *str = “Literal String Constant”;

Remember, this doesn’t actually copy any character data; it simply loads the character pointeswvanelie

the address of the ‘L' character in this string literal constant. The compiler places the literal string data son
where in memory and either initializesr with the address of the start of that character datar(ifs a global or
static variable) or it generates a short (generally one instruction) machine code sequence to initialize a run-t
variable with the address of this string constant. Nate thisis very important, many compilers will allocate

the actual string data in read-only memory. Therefore, as lang @sntinues to point at this literal string con-
stant’s data in memory, any attempt to store data into the string will likely produce a memory protection fau
Some very old C programs may have made the assumption that literal string data appears in read/write mer
and would overwrite the characters in the string literal constant at run-time. This is generally not allowed |
modern C/C++ compilers. HLA, by default, also places string literal data in write-protected memory. So if yc
encounter some older C code that overwrites the characters in a string literal constant, be aware of the fact
you will not (generally) be able to get away with this in HLA.
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If str (in the previous example) is a static or global variable, converting this declaration to assembly la
guage is very easy, you can use a declaration like the following:

static
HLAstr :string := “Literal String Constant”;

Remember, like C/C++, HLA implements string objects using pointers.HL& r is actually a four-byte
pointer variable and this code initializes that pointer with the address of the first character in the literal string c«
stant.

Because HLA string variables are pointers that (when properly initialized) point at a sequence of charact
that end with a zero byte (among other things), you can use an HLA string variable just about anywhere C/C
expects a string object. So, for example, if you want to make some Win32 API call that requires a string parar
ter, you can pass iLAst r as that parameter, e.g.,

Wn32API cal | ( HLAstr );

Of course, you don’t have to assign the address of a string literal constant to an HLA string variable to make 1
function call, HLA allows you to pass the literal string constant directly:

Wn32API cal | ( “Literal String Constant” );

Note that this call does not pass the string data directly to the function; like C/C++, HLA continues to alloca
and initialize the literal string constant in write-protected memory somewhere else and simply passes the add
of the literal string constant as the function’s parameter.

For actual string variable objects (that is, strings whose character values you can change at run-time), yc
typically find two different ways of variable declaration/allocation in a C/C++ program: the programmer will
either create a character array with sufficient storage to hold the characters in the string, or the programmer
simply declare a character pointer variable and allocate storage for the string at run-time using a function |
mal | oc (C) or new (C++). We’'ll look at both of these mechanisms in HLA in the following paragraphs.

One way to allocate storage for a C string variable is to simply declare a character array with sufficient ro
to hold the longest possible string value you will assign plus an extra byte for the zero terminator. To do this, &
C++ programmer simply declares a character array with n+1 elements, where n is the maximum number of cl
acters they expect to put into the string. The following is a typical “string” declaration in C/C++ that creates
string capable of holding up to 255 characters:

char nmyStr[256]; // 255 chars plus a zero term nating byte

Although HLA most certainly allows you to create arrays of characters, such arrays are not directly compatil
with HLA strings (because they don't reserve extra storage prior to the string object for the length and maximi
length fields that are present in the HLA string format). Therefore, you cannot allocate storage for an HLA stri
variable by simply doing the following:

static
nyStr :char[256]; // Does NOT create an HLA string!

You can use this technique to pre-allocate storage for a zero-terminated string in HLA, but this does not cre;
the proper storage for an HLA string variable.

In general, HLA expects you to allocate storage for string objects dynamically (that is, at run-time). Hov
ewer, for static strings (i.e., non-automatic string variables) the HLA Standard Library does provide a macr
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str.strvar, that lets you declare string variable and allocate storage for the string variable at compile-tim
Here is an example of the use of this macro:

static //Note: str.strvar only makes sense in the STATIC section
preAl |l ocated :str.strvar( 255 ); // Allows strings up to 255 characters |ong.

There are a couple of important things to note about this declaration. First of all, note that you surround the
of the string with parentheses, not square brackets. This is becauser var is actually a macro, not a type
and the 255 that appears in this example is a macro argument. The second thing to note is that the use ¢
str.strvar macro only makes sense in the static declaration section. It is illegahina st or age section
because this macro initializes the variable you're declaring (something you can’t\d inrat or age declara-

tion section). While the use of ther. strvar macro is technically legal in HLAseadonl y declaration sec-

tion, it doesn’t make sense to use it there since doing so would allocate the string data storage in write-prote
memory, so you'd never be able to store any character data into the string. Also notesthattherar macro
doesn't provide any mechanism for initializing the character data in the string within the declaration (not that
would be that hard to create a new macro that does this). Finally, note that you specify the maximum numbe
characters you want to allow in the string assthe st rvar argument. You do not have to account for any zero-
terminating bytes, the current string length field, or the maximum length field.

Although thest r. st rvar macro is very convenient to use, it does have a couple of serious limitations. Spe
cifically, it only makes sense to use it in theti ¢ section of an HLA program and you must know the maxi-
mum length of the string before you can usesthe strvar macro to declare a string object. Both of these
issues are easy to resolve by using dynamically allocated string objects. C/C++ programmers can also cr
dynamically allocated strings by declaring their string variables as pointers to characters, e.g.,

char *strAsPtr;

/1 Alocate storage for a 255 character string at run-tine
strAsPtr = malloc( 256 ); // 255 chars + zero ternminating byte
[l O (in C+t):

strAsPtr = new char[ 256];

In HLA, the declaration and allocation is very similar:

var // Could also be static or storage section
strAsPtr :string;

strmal | oc( 255 );
nov( eax, strAsPtr );

Do note a couple of things about the HLA usage. First, you should note that the specify the actual numbe
characters you wish to allow in the string; you don’t have to worry about the zero terminating byte. Second, y
should call the HLA Standard Libragyral | oc function (rather thamal | oc, which HLA also provides) in

order to allocate storage for a string at run time; in addition to allocating storage for the character data in
string,stral | oc also allocates (additional) storage for the zero terminating byte, the maximum length value, ar
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the current length value. Tker al | oc function also initializes the string to the empty string (by setting the cur-
rent length to zero and storing a zero in the first character position of the string data area). Finally, note that s
loc returns the address of the first character of the string in EAX so you must store that addresstintaghe
variable. HLA does support a feature known as instruction composition, so you could actually write these t
instructions as follows:

nmov( stralloc( 255 ), strAsPtr );

The drawback to this form, however, is that it hides the fact that this code sequence wipes out the EAX regis
So be careful if you decide to use this form.

Once you've initialized an HLA string variable so that it points at valid string data, you can generally pa:
that string variable to a C/C++ function (i.e., a Win32 API function) that expects a string value. The only restri
tion is that if the C/C++ function modifies the string data in such a way that it changes the length of the strir
HLA will not recognize the change if you continue to treat the string as an HLA type string upon return from tt
C/C++ function. Likewise, if a C/C++ function returns a pointer to a string that the function has created itse
your HLA functions cannot treat that string as an HLA string because it's probably just a zero-terminated strir
Fortunately, there are only a small number of Win32 API functions that return a string or modify an existin
string, so you don’t have to worry about this very often. However, that's a problem in and of itself; you me
have to deal with this problem so infrequently that it slips your mind whenever you call a function that returt
such a string. As a concrete example, consider the following (HLA) prototype for the @ir/a2 | Pat hNane
function:

static
Cet Ful | Pat hNane: procedure

(

| pFi | eNane . string;
nBuf ferLength : dword,;
var | pBuffer . ovar;
var | pFil ePart .ovar
)
@tdcall; @eturns( "eax" ); @xternal ( "__inp__GetFul | Pat hNaneA@6" );

This function, given the address of a zero-terminated string containing a filengneefane), the length
length of a bufferr(Buf f er Lengt h), the address of a buffarpBuf f er ), and the address of a pointer variable
(1 pFi I ePart) will convert the filename you pass in to a full drive letter/path/filename string. Specifically, this
function returns a string in the buffer whose address you specify lipiibh&f er parameter. However, this func-
tion does not create an HLA-compatible string; it simply creates a zero-terminated string.

Fortunately, most functions in the Win32 API that return string data do two things for you that will help mak
your life easier. First of all, Win32 API functions that store string data into your variables generally require th
you pass a maximum length for the string (e.g.,nth€ f er Lengt h parameter in the prototype above). The
function will not write any characters to the buffer beyond this maximum length (doing so could corrupt othe
data in memory). The other important thing this function does (which is true for most Win32 API functions th:
return string data) is that it returns the length of the string in the EAX register; the function returns zero if the
was some sort of error. Because of the way this function works, converting the return result to an HLA string
nearly trivial. Consider the following call teet Ful | Pat hNane:

static
full Nane :string;
nanmePtr :pointer to char;
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strall oc( 256 ); /1 Al'locate sufficient storage to hold the string data.
mov( eax, full Name );

mov( full Nane, edx );
CGet Ful | Pat hName

(

“myfile.exe”, /'l File to get the full path for.

(type str.strRec [edx]).MaxStrLen, /1 Maxi mum string size

[ edx], /1l Pointer to buffer

nanePt r /1 Address of base nane gets stored here
)
mov( full Nane, edx ); /1 Note: Wn32 calls don’'t preserve EDX

mov( eax, (type str.strRec [edx]).length // Set the actual string length

The nice thing about most Win32 API calls that return string data is that they guarantee that they won't overwt
a buffer you pass in (you also pass in the maximum string length, which is availableaxghe en field of the

string object, that is, at offset -8 from the string pointer). These string functions also return the string length
the function’s result, so you can shove this into the HLA stringigt h field (at offset -4 from the string’s base
address) immediately upon return. This is a very efficient way to convert C/C++ strings to HLA format string
upon return from a function.

Of course, converting a C/C++ string to an HLA string is only easy if the C/C++ function you're calling
returns the length of the string it has processed. It also helps if the function guarantees that it won'’t overstep
bounds of the string variable you've passed it (i.e., it accegsar Len parameter and won't write any data
beyond the maximum buffer size you've specified). Although most Win32 API functions that return string da
operate this way (respect a maximum buffer size and return the length of the actual string), there are many C/t
functions you may need to call that won’t do this. In such a case, you've got to compute the length of the str
yourself (and guarantee that your character buffer is large enough to hold the maximum possible string the ft
tion will produce). Fortunately, there is a function in the HLA Standard Library, str.zlen, that will compute th
length of a zero terminated string so you can easily update the length field of an HLA string object that a C/C
function has changed (without respect to the HLA string’s length field). For example, suppose you have a C/C
function named st r that expects the address of a character buffer where it can store (or modify) a zero-tern
nated string. Since HLA strings are zero-terminated, you can pass an HLA string to this function. However.
f str changes the length of the string, the function will not update the HLA striaggs h field and the result
will be inconsistent. You can easily correct this by computing the length of the string yourself and storing tl
length into the HLA string’s engt h field, e.qg.,

static
someStr :str.strvar( 255 ); // Allow strings up to 255 characters in |ength.

fstr( soneStr ); /1 Assune this changes the | ength of soneStr.
nov( soneStr, edx ); // Get the pointer to the string data structure.

str.zlen( edx ); /1 Conpute the new | ength of soneStr.
nov( eax, (type str.strRec [edx]).length ); // Update the length field.

One thing to keep in mind is thatr . zI en has to search past every character in the string to find the zero-termi-
nating byte in order to compute the string’s length. This is not a particularly efficient operation, particularly if th
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string is long. Althouglstr. zl en uses a fairly decent algorithm to search for the terminating zero byte, the
amount of time it takes to execute is still proportional to the length of the string. Therefore, you want to avc
callingstr. zl en if at all possible. Fortunately, many C/C++ string functions (that modify string data) return the
length as the function result, so callg . zI en isn't always necessary.

Although not explicitly shown in the example above, do keep in mind that many string functions (especial
Win32 API functions) assign double-duty to the function return result; they’ll return a positive value if the func
tion successfully produces a string and they’ll return a negative result (or sometimes a zero result) if there wa:
error. For example, theet Ful | Pat hName function in the earlier example returns zero if it there was a problem
producing the string. You code should check for errors on return from these functions to prevent probler
While shoving a zero into a string length field isn’t cause for concern (indeed, that’s perfectly reasonable), a n
ative number will create all kinds of problems (since the HLA string functions treat the length fieldhaszan
value, those functions will interpret a negative number as a really large positive value).

3.2.2.5: C++ and Assembly Class Types

C++ and HLA both support classes. Since HLA is an assembly language, it should be obvious that anyth
you can do with a C++ class you can do with in HLA (since C++ compilers convert C++ source code into X
machine code, it should be obvious that you can achieve anything possible in C++ using assembly langua
However, directly translating C++ classes into HLA classes is not a trivial matter. Many constructs transf
across directly. Some constructs in C++, however, do not have a direct correspondence in HLA. Quite hone:
the conversion of C++ classes to HLA classes is beyond the scope of this book; fortunately, we're dealing w
the Win32 API in this book so we won’t see much Windows source code that uses classes in typical docume!
tion we're interested it. There is quite a bit of C++-based object-oriented code out there for Windows but most
it uses the Microsoft Foundation Classes (MFC) class library, and that’s not applicable to assembly language |
gramming (at least, not today; someday there might be an “Assembly Language Foundation Class” library
until that day arrives we don’t have to worry about MFC). Since this book covers Win32 API programming
there really is no need to worry about converting C++ classes into assembly - the Win32 API documentat
doesn’t use classes. This book may very well use HLA classes and objects in certain programming examg
but that will be pure assembly language, not the result of translating C++ code into HLA code.

3.2.3:  C and Assembly Pointer Types ’

When running under 32-bit versions of the Windows operating system, C pointers are always 32-bit valt
and map directly to 32-bit flat/linear machine addresses. This is true regardless of what the pointer referer
(including both data and functions in C). At one level, the conversion of a pointer from C to HLA/assembly
fairly trivial, just create @wor d variable in you HLA program and keep the pointer there. However, HLA (like
C) supports typed pointers and procedure pointers; generally, it's a good idea to map C pointers to their H
typed-pointer equivalent.

In C, you can apply the address-of operator, ‘&’ to an object (e.g., a static variable or a function name) to tz
the address of that object. In HLA, you may use this same operator to take the addraeiaswblaject (a
stati c/ st orage/ r eadonl y variable, statement label, or procedure name). The result is a 32-bit value that yo
may load into a register or 32-bit memory variable. For example, if in C you have a statement like the followit
(pi Is a pointer to an integer ands a static integer variable):

7. Many programmers (and languages) consider pointers to be a scalar type because the value is not composed of other types
This book treats pointers as a separate classification simply because it has to discuss both scalar and composite data types
before being able to discuss pointers.
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pi = &;
You convert this to HLA syntax as follows:
nmov( &, pi );

If the object you're taking the address of with the ‘&’ operator is not a function name or a static (non-indexe:
variable, then you must compute the address of the object at run-time usirg thstruction. For example,
automatic variables (non-static local variables) fall into this class. Consider the following C function fragment

int f( void)

{
int *pi; /1 Declares a variable that is a pointer to an integer
int i; /1l Declares a local integer variable using automatic allocation
pi = & ;

}

Because is an automatic variable (the default storage class for local variables in a function) HLA cannot stat
compute this address for you at compile time. Instead, you would useathestruction as follows:

procedure f;

var
pi: pointer to int32; // Declare HLA pointers this way.
i: int32; /1 Declares an automatic variable in HLA (in the VAR section)
lea( eax, i ); /1 Compute the run-tine address of
mov( eax, pi ); /1 Save address in pi.

You should also note that you need to use #aeinstruction when accessing an indexed object, even if the
base address is a static variable. For example, consider the following C/C++ code that takes the address ¢
array element:

int *pi

static int array[ 16 ];

pi ; &array[i];
In order to access an array element in assembly language, you will need to use a 32-bit register as an index r
ter and compute the actual element address at run-time rather than at compile-time (assummghtb&xam-
ple is a variable rather than a constant). Therefore, you cannot use the ‘&’ operator to statically compute

address of this array element at compile-time, instead you should uge thstruction as follows:

mov( i, ebx ); /1 Move index into a 32-bit register
| ea( eax, array[ ebx*4 ] ); // int objects are four bytes under Wn32
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nmov( eax, pi );

As you've seen in these simple examples, C uses the unary “*’ operator to declare pointer objects. Anytil
you see a declaration like the following in C:

t ypenane *X,
you can convert it to a comparable HLA declaration as follows:

X:pointer to hla typenane, [/ hla typenane is the HLA equivalent of C s typenane

Of course, since all pointers are simply 32-bit objects, you can also convert to assembly language using a s
ment like the following:

x: dwor d;

Both forms are equivalent in assembly language, though the former version is preferable since it’s a little m
descriptive of what's going on here.

Function pointers in C is one area where the C syntax can get absolutely weird. A simple C function poin
declaration takes the following form:

returnType (*functionPtrNane) ( paraneters )
For example,

int (*ptrToFuncReturnsint) ( int i, int j );

This example declares a pointer to a function that takes two integer parameters and returns an integer value.
that the following isiot equivalent to this example:

int *ptrToFuncReturnsint( int i, int j ); //Not a function pointer declaration

This example is a prototype for a function that returns a pointer to an integer, not a function pointer. C’s syn
is a little messed up (i.e., it wasn't thought out properly during the early stages of the design), so you can
somereal interesting function pointer declarations; some are nearly indecipherable.

Of course, at the assembly language level all pointers arewwisd variables. So all you really need to
implement the C function pointer in HLA is a statement like the following:

pt r ToFuncRet urnsi nt: dword;
You can all this function in HLA using thel | instruction as follows:
cal I ( ptrToFuncReturnsint );
As for data pointers, however, HLA provides a better solution: procedure variables. A procedure variable i

pointer object that (presumably) contains the address of some HLA procedure. The advantage of a proce:
variable over aiwor d variable is that you can use HLAS high-level syntax calling convention with procedure
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variables; something you cannot do wittivar d variable. Here’s an example of a procedure variable declara-
tion in HLA:

ptr ToFuncReturnslint: procedure( i:int32; j:int32 );

HLA allows you to call the code whose address this variable contains using the standard HLA procedure ¢
syntax, e.g.,

ptr ToFuncReturnsint( 5, intVar );

To make this same call usingdaor d variablé, you'd have to manually pass the parameters yourself as follows
(assuming you pass the parameters on the stack):

push( 5 ); /1 Pass first paranmeter (i)
push( intVar ); [/ Pass second paraneter.
call ( ptrToFuncReturnsint );

In C, any time a function name appears without the call operator attached to it (the “call operator” is a set
parenthesis that may contain optional parameters), C substitutes the address of the function in place of the n
You do not have to supply the address-of operator (‘&’) to extract the function’s address (though it is legal to
ahead and do so0). So if you see something like the following in a C program:

ptr ToFuncRet urnsint = funcReturnsint;

wheref uncRet ur nsi nt is the name of a function that is compatible with ToFuncRet ur nsl nt’ s declaration

(e.g., it returns an integer result and has two integer parameters in our current examples), this code is simply
ing the address of the function and shoving it ptoToFuncRet ur nsi nt exactly as though you'd stuck the ‘&’
operator in front of the whole thing. In HLA, you can use the ‘&’ operator to take the address of a function (the
are always static objects as far as the compiler is concerned) and move it into a 32-bit register or variable (e.
procedure variable). Here’s the code above rewritten in HLA:

nmov( &funcReturnsint, ptrToFuncReturnsint );

Both C and HLA allow you to initialize static variables (including pointer variables) at compile time. In C,
you could do this as follows:

static int (*ptrToFuncReturnsint) ( int i, int j) = funcRe-
turnsint;

The comparable statement in HLA looks like this:

procedure funcReturnsint( i:int32; j:int32);
begi n funcReturnsint;

end funcReturnslnt;

static

8. Actually, this calling scheme works for HLA procedure variables, too.
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ptr ToFuncRet urnsint: procedure( i:int32; j:int32 ) := & uncReturnslnt;

Especially note that in HLA, unlike C, you still have to use the ‘&’ operator when taking the address of a fun
tion name.

Note that you cannot initialize HLA automatic variables (variables) using a statement like the one in this
example. Instead, you must move the address of the function into the pointer variable usbegrkguction
given a little earlier.

Arrays are another object that C treats specially with respect to pointers. Like functions, C will automatical
supply the address of an array if you specify the name of an array variable without the corresponding index oj
ator (the square brackets). HLA requires that you explicitly take the address of the array variable. If the arra
a static object (static/readonly/storage) then you may use the (static) address-of operator, ‘&’; however, if
variable is an automatiedr) object, then you have to take the address of the object at run-time usirg the
instruction:

static
stati cArray :byte[10];
var
aut oArray :byte[ 10];
mov( &staticArray, eax ); /1 Can use ‘& on static objects
| ea( ebx, autoArray ); /1 Must use |lea on automatic (VAR) objects.

C doesn’t automatically substitute the address of a structure or union whenever it encounters a struct or ut
variable. You have to explicitly take the address of the object using the ‘&’ operator. In HLA, taking the addre
of a structure or union operator is very easy - if it's a static object you can use the ‘&’ operator, if it's an aut
matic {sar) object, you have to use the lea instruction to compute the address of the object at run-time, just |
other variables in HLA.

There are a couple of different ways that C/C++ allows you to dereference a pointer Yarfitde as
you've already seen, to dereference a function pointer you simply “call” the function pointer the same way y
would directly call a function: you append the call operator (parenthesis and possible parameters) to the poi
name. As you've already seen, you can do the same thing in HLA as well. Technically, you could also deref
ence a function pointer in C/C++ as follows:

(*ptr ToFuncReturnslint)( 5, intVar );

However, you'll rarely see this syntax in an actual C/C++ source file. You may convert an indirect function ce
in C/C++ to either HLA's high-level or low-level syntax, e.g., the following two calls are equivalent:

push( 5 );

push( intVvar );

call ( ptrToFuncReturnsint );
/'l -or-

ptr ToFuncReturnsint( 5, intVar );

9. Dereferencing means to access the data pointed at by a pointer variable.
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Dereferencing a pointer to a data object is a bit more exciting in C/C++. There are several ways to dere
ence pointers depending upon the underlying data type that the pointer references. If you've got a pointer
refers to a scalar data object in memory, C/C++ uses the unary *’ operator. For exapipie afpointer that
contains the address of some integer in memory, you can reference the integer value using the following C/(
syntax:

*pi = i+42; /] Store the sumi+2 into the integer that pi points at.
j = *pi; /1 Grab a copy of the integer’s value and store it into j.

Converting an indirect reference to assembly language is fairly simple. The only gotcha, of course, is ti
you must first move the pointer value into an 80x86 register before dereferencing the pointer. The followi
HLA examples demonstrate how to convert the two C/C++ statements in this example to their equivalent Hl
code:

[l *pi =1 + 2
nmov( pi, ebx ); /1 Move pointer into a 32-bit register first!
mov( i, eax ); /1 Conpute i + 2 and | eave sumin EAX

add( 2, eax );
nov( eax, [ebx] ); // Store i+2's suminto the | ocation pointed at by EBX

[l j = *pi;

mov( pi, ebx ); /1 Only necessary if EBX no |onger contains pi’s val ue!
nmov( [ebx], eax ); // Only necessary if EAX no |onger contains *pi’s val ue!
nov( eax, | ); /1 Store the value of *pi into j.

If you've got a pointer that holds the address of a sequence of data values (e.g., an array), then there are
completely different (but equivalent) ways you can indirectly access those values. One way is to use C/C+
pointer arithmetic syntax, the other is to usarray syntax. Assumingpa is a pointer to an array of integers, the
following example demonstrates these two different syntactical forms in action:

*(pati) =j; /1l Stores j into the ith object beyond the address held in pa.
pa[i] =j; /1 Stores j into the ith elenent of the array pointed at by pa.

The important thing to note here is that both forms are absolutely equivalent and almost every C/C++ comp
on the planet generates exactly the same code for these two statements. Since compilers generally pro
exactly the same code for these two statements, it should come as no surprise that you would manually cor
these two statements to the same assembly code sequence. Conversion to assembly language is slightly cc
cated by the fact that you must remember to multiply the index into an array (or sequence of objects) by the :
of each array element. You might be tempted to convert the statements above to something like the following

mov( j, XXX); /1 XXX represents sone register that will hold j’'s val ue.
nov( pa, ebx ); /1 Get base address of array/sequence in nmenory
nov( i, ecx ); /1 Grab index

nov( XXX, [ebx][ecx] ); [/ XXX as above

The problem with this sequence is that it only works properly if each element of the array is exactly one byte
size. For larger objects, you must multiply the index by the size of an array element (in bytes). For example
each element of the array is six bytes long, you'd probably use code like the following to implement these two
C++ statements:
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mov( j, eax ); /1 Get the L.O four bytes of j.

mov( j[4], dx ); /1 Get the H O two bytes of j.

mov( pa, ebx ); /'l CGet the base address of the array into EBX

mov( i, ecx ); /1 Grab the index

intmul ( 6, ecx ); /1 Multiply the index by the elenment size (six bytes).
mov( eax, [ebx][ecx] ); /1 Store away L.Q four bytes

mov( dx, [ebx][ecx][4] ); // Store away H O two bytes.

Of course, if the size of your array elements is one of the four magic sizes of one, two, four, or eight byt
then you don’t need to do an explicit multiplication. You can get by using the 80x86 scaled indexed address
mode as the following HLA example demonstrates:

mov( j, eax );
mov( pa, ebx ); /1 CGet base address of array/sequence in menory
mov( i, ecx ); /1 Grab index

mov( eax, [ebx][ecx*4] ); // Store j’s value into pa[i].

C uses yet another syntax when accessing fields of a structure indirectly (that is, you have a pointer to st
structure in memory and you want to access a field of that structure via the pointer). The problem is that
unary *’ (dereference) operator has a lower precedence than C's ‘. (field access) operator. In order to acce
field of some structure to which you have a pointer, you'd have to write an expression like the following whe
using the *' operator:

(*ptrToStruct).field
Avoid the temptation to write this as follows:
*ptrToStruct.field

The problem with this latter expression is that ‘" has a higher precedence than ', so this expression tells the
compiler to dereference the thing tipat ToSt ruct. fi el d points at. That ispt r ToSt ruct must be an actual
struct object and it must have a figldel d, that is a pointer to some object. This syntax indirectly references the
value whose addressel d contains. An expression of the form “*(ptrToStruct).field” tells the compiler to first
dereference the pointgrr ToSt ruct and then accessel d at the given offset from that indirect address.

Because accessing fields of a structure object indirectly is a common operation, using the syntax “(*ptrT
Struct).field” tends to clutter up a program and make it less readable. In order to reduce the clutter the C/C
programming language defines a second dereferencing operator that you use specifically to access fields
structure (or union) via a pointer: the “->” operator. The “->” operator has the same precedence as the fi

selection operator (“.”) and they are both left associative. This allows you to write the following expressic
rather than the ungainly one given earlier:

ptrToStruct->field

Regardless of which syntax you find in the C/C++ code, in assembly language you wind up using the same c
sequence to access a field of a structure indirectly. The first step is to always load the pointer into a 32-bit re
ter and then access the field at some offset from that indirect address. In HLA, the best way to do this is to co
an indirect expression like “[ebx]” to the structure type (using the “Qp€[ebx])” syntax) and then use the “”
field reference operator. For example,
type

Struct:

record
field :int32;
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endr ecord;

static
ptrToStruct :pointer to Struct;

/1 Access field “field” indirectly via “ptrToStruct”

mov( ptrToStruct, ebx );
mov( (type Struct [ebx]).field, eax );

For more details on the HLA type coercion operator, please consult the HLA language reference manual. N
that you use this same technique to indirectly access fieldsoba or acl ass in HLA.

You may combine structure, array, and pointer types in C/C++ torfsursive andnested types. That is,

you can have an array of structs, a struct may contain a field that is an array (or a struct), or you could even |
a structure that has a field that is an array of structs whose fields are arrays of pointers to structs whose fields
general, a C/C++ programmer can create an arbitrarily complex data structure by nesting array, struct, un
class, and pointer data types. Translating such objects into assembly language is equally complex, often taki
half dozen or more instructions to access the final object. Although such constructs rarely appear in real-wc
C/C++ programs, they do appear every now an then, so you'll need to know how to translate them into assen
language.

Although a complete description of every possible data structure access conversion would require too mi
space here, an example that demonstrates the process you would go through is probably worthwhile. For
purposes, consider the following complex C/C++ expression:

per->field[i].p->x[]].y

This expression uses three separate operators: “->”, “[ ]”, and “.”. These three operators all have the same pr

dence and are left associative, SO we process this expression strictly on a Ieft-to-rié‘?}t bhasigdirst object in
this expressiomer , is a pointer to some structure. So the first step in the conversion to HLA is to get this pointe
value into a 32-bit register so the code can refer to the indirect object:

nov( per, ebx );

The next step is to access a field of the structureéhateferences. In this exampie el d is an array of struc-
tures and the code accesses elemenftthis array. To access this particular object, we need to compute the
index into the array (by multiplying the index by the size of an array element). Assuimingis an array of

fi el dpi ece objects, you'd use code like the following to referenceitteobject off i el d:

mov( i, ecx ); /1 Get the index into the field array.
intmul ( @ize( fieldpiece ), ecx ); [/ Miltiply index by the size of an el enent

10.A later section in this chapter will discuss C/C++ operator precedence and associativity. Please see that section for more
details concerning operator precedence and associativity.
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The next step in the conversion of this expression is to acces$ieha of thei t" array element ofi el d. The
following code does this:

mov( (type ptrsTypg ebx]). p[ecx], edx );

The interesting thing to note here is that the index into the field array is tacked on to the end of the HLA addr
expression we've created, i.e., we write “(type ptrsType[ebx]).p[ecx]” rather than “(type ptrsType[ebx])[ecx].p”
This is done simply because HLA doesn’t allow this latter syntax. Because the “.” and “[ ]” operators bot
involve addition and addition is commutative, it doesn’t matter which syntax we use. Note that HLA woul
allow an address expression of the form “(type ptrsType [ebx][ecx]).p” but this tends to (incorrectly) imply the

EBX points at an array of pointers, so we'll not use this form'here

The array element that “(type ptrsType [ebx]).p[ecx]” access is a pointer object. Therefore, we have to mc
this pointer into a 32-bit register in order to dereference the pointer. That's why the previous HLA stateme
moved this value into the EDX register. Now this pointer points at an array of array objects (the x field) and t
code then accesses §Hié element of this array (of structures). To do this, we can use the following HLA state-
ments:

nov( j, esi ); /1 Get the index into the array.
intmul ( @i ze( xType ), esi ); [/ Miltiply by the size of an array el enent.

/1 Now [edx][esi] references the jth elenment of the x field

The last step in our code sequence is to referencefitle of thej " element of the array. Assuming thatis
a double-word obiject (just to make things easy for this example), here’s the code to achieve this:

nmov( (type xType [edx]).y[esi], eax );

Here’s the complete code sequence:
11 ptr->field[i].p->x[j].y

nov( ptr, ebx );

nov( i, ecx ); /1 Get the index into the field array.
intmul ( @ize( fieldType ), ecx ); [/ Miltiply index by the size of an el enent
nov( (type ptrsType [ebx]).p[ecx], edx );

nmov( j, esi ); /1 Get the index into the array.

intmul ( @i ze( xType ), esi ); [/ Miltiply by the size of an array el enent.
nov( (type xType [edx]).y[esi], eax );

3.2.4. C and Assembly Language Constants

Although we've already looked at literal constants in C/C++ and assembly language, we must still consic
symbolic constants in C/C++ and their equivalents in assembly languaggmbglic constant is one that we
refer to by name (an identifier) rather than the constant’s value (i.e., a literal constant). Syntactically, a symb
constant is an identifier and you use it as you would a variable identifier; semantically of course, there are cer
limitations on symbolic constants (such as you cannot assign the value of an expression to a symbol const:
There are two types of symbolic constants you'll find in the C and C++ languaagefest constants andstor-
age constants.

11.The implication is only visual. This form is completely equivalent to the previous form since additilbrcgsnmutative.
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The first type of constant to consider isnanifest constant. A manifest constant is a symbolic identifier to
which you've bound (assigned) some value. During compilation, the compiler simply substitutes the actual va
of the constant everywhere it encounters the manifest constant’s identifier. From the standpoint of the compils
code generation algorithms, there is no difference between a manifest constant and a literal constant. By the
the code generator sees the constants, it's a literal value. In C/C++, you can#dseithe preprocessor direc-
tive to create manifest constants. Note that you can use a manifest constant anywhere a literal constant is le

There are two ways to convert a C/C++ manifest constant into assembly language. The first way, of cours
to manually do the translation from symbolic to literal constant. That is, whenever you encounter a manifest ci
stant in C/C++, you simply translate it to the corresponding literal constant in your assembly language co
E.g.,

#defi ne someConst 55

i = someConst;
in assembly language becomes:
nmov( 55, i );

Obviously, manually expanding manifest constants when converting C/C++ code into assembly language
not a good idea. The reasons for using symbolic constants in C/C++ apply equally well to assembly langu
programs. Therefore, the best solution is to keep the constants symbolic when translating the C/C++ cod:
assembly language. In HLA, the way to create manifest constants is by usingsthdeclaration section. The
exact form of the translation depends how the C/C++ code usesdhiene preprocessor directive. Technically,
the#def i ne preprocessor directive in C/C++ doesn’t define a constant, it defines a macro. There are two ba
forms of the#def i ne directive:

#define sonel D sone text..

#define sonel O paraneter |ist) sone text..

WE'll not consider the second form here, since that's a true macro declaration. We’'ll return to macros and hov
convert this second example to HLA a little later in this chapter.

The first#def i ne directive in this example definestextual substitution macro. The C/C++ preprocessor
will substitute the text followingonel D for each occurrence @bnel D appearing after this declaration in the
source file. Note that the text following the declaration caangthing, it isn’t limited to being a literal con-
stant. For the moment, however, let’s just consider the case where the text followitef ihee directive and
the identifier is a single literal constant. This begin the case, you can create an equivalent HLA manifest cons
declaration using code like the following:

/1 #define fiftyFive 55

const
fiftyFive := 55

Like C/C++, HLA will substitute the literal value 55 for the identifier t yFi ve everywhere it appears in the
HLA source file.
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There is a subtle difference between HLA manifest constants you definernist asection and manifest con-
stants you define with C/C++slef i ne directive: HLAs constants are typed while C/C#tlef i ne constants
are untyped textual substitutions. Generally, however, you will not notice a difference between the two. Ho
ever, one special case does deserve additional comment: the case where a program specifies a constant expr
rather than a single literal constant (which both languages allow). Consider the following statements in C/C
and in HLA:

[l CI C++ constant expression
#defi ne const Expr i*2+j
/1 HLA constant expression:

const
const Expr = i*24j;

The difference between these two is that the C/C++ preprocessor simply saves up the text “i*2+j” and emits t
string whenever it encountessnst Expr in the source file. C/C++ does not require thahdj be defined prior

to the #def i ne statement. As long as these identifiers have a valid definition prior to the first appeatanece of

st Expr in the source file, the C/C++ code will compile correctly. HLA, on the other hand, evaluates the consta
expression at the point of the declaration. iSandj must be defined at the point of the constant declaration
(another difference is that HLA requiresandj to both be constants whereas C/C++ doesn’t require this;
though ifi andj are not constant objects then this isn’t really a manifest constant declaration as we're defining
here, so we won'’t worry about that).

Beyond the fact that C/C++ relaxes the requirement that i and j be defined before the manifest constant de
ration, there is another subtle difference between C/C++ constant declarations and HLA constant declaratic
late binding. HLA evaluates the value of the expression at the point you declare the constant in your source 1
(which is whyi andj have to be defined at that point in the previous example). C/C++, on the other hand, on
evaluates the constant expression when it actually expands the symbolic identifier in your source file. Consi
the following C/C++ source fragment:

#define const Expr i*2 + |
#define i 2
#define j 3

printf( “1:%l\n", constExpr );
#define i 4 //The conpiler may issue a warning about this

printf( “2:%l\n", constExpr );

The firstpri nt f statement in this example will display the value seven (2*2+3) whereas the second example w
display 11 (4*2+3). Were you to do the equivalent in HLA (usiag constants and the “?” statement in HLA,
see the HLA reference manual for more details), you would get a different result, e.qg.,

programt;
#i nclude( “stdlib.hhf” )

?
? ]
const

2; /] Defines i as a redefinable constant
3,
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constExpr :=i*2 + j;
begin t;

stdout.put( “1:”, constExpr, nl );
20 1= 4
stdout.put( “2:”, constExpr, nl );

end t;

The HLA code prints the strings “1:7” and “2:7” since HLA only computes the expression “i*2+j” once, when
you define theonst Expr manifest constant.

HLA does allow the definition dixtual substitution constants using thet ext data type in the const section.
For example, consider the following HL#nst declaration:

const
const Expr :text := “i*2+j";

This declaration is totally equivalent to the C/Cu#def i ne declaration. However, as you cannot drop in arith-
metic expressions into assembly code at arbitrary points in your source file, this textual substitution isn’t alwe
legal in an assembly file as it might be in a C/C++ source file. So best not to attempt to use textual substitu
constants like this. For completeness’ sake, however, the following HLA example demonstrates how to emt
textual substitution constant expressions in an HLA source file (and have the compiler calculate the expressic
the point of expansion):

programt;
#incl ude( “stdlib. hhf” )

2 i
? ]

2; /] Defines i as a redefinabl e constant
3;

const

/1 Note: “@val” tells HLA to evaluate the constant expression inside

/1 the parentheses at the point of expansion. This avoids sone
/1 syntax problens with the stdout. put statenents bel ow.
const Expr :text := “@val (i*2 + j)";

begin t;

stdout.put( “1:”, constExpr, nl );
20 1= 4
stdout.put( “2:”, constExpr, nl );

end t;

This HLA example prints “1:7” and “2:11” just like the C/C++ example. Again, however, if the C/C++ manifest
constant expansion depends upon late binding (that is, computing the value of the expression at the point of
rather than the point of declaration in the source file) then you should probably expand the text manually at e
point of use to avoid problems.
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The other way to define constant objects in C/C++ is to ussthe keyword. By prefacing what looks like
an initialized C/C++ variable declaration with the const keyword, you can create constant (immutable at ru
time) values in your program, e.g.,

const int cConst = 4;

Although C/C++ lets you declare constant objects usingdhet keyword, such constants possess different
semantics than manifest and literal constants. For example, in C/C++ you may declare an array as follows:

#define maxArray 16

int array[ naxArray ];
i nt anot herArray[ maxArray ];

However, the following is generally not legal in C/C++:

const int maxBounds = 8;
int i Array[ nmaxBounds ];

The difference between manifest constantsamdt objects in C/C++ has to do with how the program treats
the constant object at run-time. Semantically, C++ treaist objects as read-only variables. If the CPU and
operating system support write-protected memory, the compiler may very well place the const object’s value
write-protected memory to enforce the read-only semantics at run-time. Other than the compiler doesn't all
you to store the result of some expression intmast object, there is little difference betweebonst and

stati c variable declarations in C++. This is why a declaration like the onexfermy earlier is illegal. C/C++
does not allow you to specify an array bounds using a variable and (with the exception of the read-only attribt
const objects are semantically equivalent to variables. To understand why €é@st+objects are not manifest
constants and why such declarations are even necessary in C/C++ (given the preserdefofnhereproces-

sor directive), we need to look at how CPUs encode constants at the machine code level.

The 80x86 provides special instructions that can encode certain constants directly in a machine instructi
Consider the following two 80x86 assembly language instructions:

mov( maxBound, eax ); [/ Copy maxBound s val ue into eax
mov( 8, eax ); /1 Copy the value eight into eax

In both cases the machine code the CPU executes consists of three components: an opcode that tells the
cessor that it needs to move data from one location to another; an addressing mode specification that specifie
register, whether the register is a destination or source register, and the format the other operand takes (it cou
a register, a memory location, or a constant); and the third component is the encoding of the memory addres
the actual constant. The instruction that copte®Bound’ s value into EAX encodes the address of the variable
as part of the instruction whereas the instruction that copies the value eight into EAX encodes the 32-bit value
eight into the instruction. At the machine level, there is a fundamental difference between the execution of th
two instructions — the CPU requires an extra step to fetcBound’ s value from memory (and this fact remains
true even if you initializeraxBound to eight and placeaxBound in write-protected memory). Therefore, the
CPU treats certain types of literal and manifest constants differently than it does other types of constants.

Note that a constant (literal, manifest, or otherwise) object in a high level language does not imply that t
language encodes that constant as part of a machine instruction. Most CPUs only allow you to encode inte
constants (and in some casasall integer constants) directly in an instruction’s opcode. The 80x86, for exam-
ple, does not allow you to encode a floating point constant within a machine instruction. Even if the CPU we
capable of encoding floating point and all supported integer values as immediate constants within an opcc
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high level languages like C/C++ support the declaration of large data objects as constant data. For example,
could create a constant array in C/C++ as follows:

const int constArray[4] = {0,1, 2, 3};

Few processors, if any, support the ability to encode an arbitrary array constant as immediate data withi
machine instruction. Similarly, you'll rarely find structure/record constants or string constants encoded direc
within an instruction. Support for large structured constants is the main reason C/C++ adds a another clas
constants to the language.

A high level language compiler may encode a literal constant or a manifest constant as an instruction’s imr
diate operand. There is no guarantee, however, that the compiler might actually do this; the CPU must sup
immediate constants of the specified type and the compiler write must choose to emit the appropriate immed
addressing mode along with the instruction. On the other hand, constants that are not manifest constants |
const objects in C/C++) are almost always encoded as memory references rather than as immediate data t
instruction.

So why would you care whether the compiler emits a machine instruction that encodes a constant as pa
the opcode versus accessing that constant value appearing in memory somewhere? After all, since mac
instructions appear in memory, an immediate constant encoded as part of an instruction also appears in mer
So what'’s the difference? Well, the principle difference is that accessing a constant value appearing elsewhel
memory (i.e., not as immediate data attached to the instruction) requires twice as much memory to encode. F
you need the constant itself, consuming memory somewhere; second, you need the address that con
encoded as part of the instruction. Since the address of a constant value typically consumes 32-bits, it typic
takes twice as much memory to encode the access to the constant. Of course, if you reference the same col
value throughout your code, the compiler should only store one copy of the constant in memory and ev
instruction that references that constant would reference the same memory location. However, even if you an
tize the size of the constant access over any number of instructions, the bottom line is that encoding constan
memory location still takes more room than encoding immediate constants.

Another difference between manifest/literal constants and read-only objects is that decent compilers v
compute the result of constant expressions at compile-time, something that it may not be able to do with re
only objects. Consider the following C++ code:

#define one 1
#define two 2

const int three = 3;
const int four = 4;
int i;

int j;

i
j

one + two;
three + four;

Most decent C/C++ compilers will replace the first assignment statement above with the following:
i =3; [/ Conpiler conpute 1+2 at conpile-tine

On the 80x86 processor this statement takes a single machine instruction to encode (this is generally true
most processors). Some compilers, however, may not precompute the value of the expression “three+four”
will, instead, emit machine instructions to fetch these values from their memory locations and add them at r
time.
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HLA provides a mechanism whereby you can create immutable “variables” in your code if you need the st
age semantics of a variable that the program must not change at run-time. You can useddbhAs declara-
tion section to declare such objects, e.g.,

readonly
constValue :int32 := -2;

For all intents and purposes, HLA treats tlkadonl y declaration like at at i ¢ declaration. The two major dif-
ferences are than HLA requires an initializer associated witteadlonl y objects and HLA attempts to place
such objects in read-only memory at run time. Note that HLA doesn’t prevent you from attempting to store
value into a eadonl y object. That is, the following is perfect legal and HLA will compile the program without
complaint:

nmov( 56, constVal ue );

Of course, if you attempt to execute the program containing this statement, the program will probably abort w
anillegal access violation when the program attempts to execute this statement. This is because HLA will plac
this object in write-protected memory and the operating system will probably raise an exception when y
attempt to execute this statement.

A compiler may not be able to efficiently process a constant simply because it is a literal constant or a me
fest constant. For example most CPUs are not capable of encoding a string constant in an instruction. Usi
manifest string constant may actually make your program less efficient. Consider the following C code:

#define strConst “A string constant”
printf( “string: %\n”, strConst );
sptr = strConst;

result = strcnp( s, strConst );

Because the compiler (actually, the C preprocessor) expands the snacsast to the string literal “A
string constant” everywhere the identiféer Const appears in the source file, the above code is actually equiva-
lent to:

printf( “string: %\n”, “A string constant” );

sptr = “A string constant”;

Page 175



result = strcnp( s, “A string constant” );

The problem with this code is that the same string constant appears at different places throughout the |
gram. In C/C++, the compiler places the string constant off in memory somewhere and substitutes a pointe
that string for the string literal constant. A naive compiler would wind up making three separate copies of t
string in memory, thus wasting space since the data is exactly the same in all three cases. Compiler writers
ured this out a couple of decades ago and modified their compilers to keep track of all the strings the comg
had already emitted; when the program used the same literal string constant again, the compiler would not ¢
cate storage for a second copy of the string, it would simply return the address of the earlier string appearin
memory. Such an optimization could reduce the size of the code the compiler produced by a fair amount if
same string appears through some program. Unfortunately, this optimization probably lasted about a week be
the compiler vendors figured out that there were problems with this approach. One major problem with tt
approach is that a lot of C programs would assign a string literal constant to a character pointer variable and 1
proceed to change the characters in that literal string, e.g.,

sptr = “A String Constant”;
*(sptr+2) = 's’;
printf( “string: ‘%’ \n”, sptr ); /* displays “string: ‘A string Constant’” */

printf( “A String Constant” ); /* Prints “A string Constant”! */

Compilers that used the same string constant in memory for multiple occurrences of the same string lite
appearing in the program quickly discovered that this trick wouldn’t work if the user stored data into the strir
object, as the code above demonstrates. Although this is a bad programming practice, it did occur freque
enough that the compiler vendors could not use the same storage for multiple copies of the same string lite
Even if the compiler vendor were to place the string literal constant into write-protected memory to prevent tl
problem, there are other semantic issues that this optimization raise. Consider the following C/C++ code:

sptrl “A String Constant”;
sptr2 “A String Constant”;
S1EQs2 = sptrl == sptr2;

Will s1EQs2 contain true (1) or false (0) after executing this instruction sequence? In programs written before
compilers had strong optimizers available, this sequence of statements would leavesfaigezitecause the
compiler created two different copies of the same string data and placed those strings at different addresse
memory (so the addresses the program assigis ta andspt r 2 would be different). In a later compiler, that
kept only a single copy of the string data in memory, this code sequence would leave true sitiQgisince
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bothsptr1 andspt r2 would be pointing at the same address in memory; this difference exists regardless
whether the string data appears in write-protected memory.

Of course, when converting the C/C++ code to assembly language, it is your responsibility to determi
whether you can merge strings and use a common copy of the data or whether you will have to use a sep:
copy of the string data for each instance of the symbolic constant throughout your assembly code.

C/C++ supports other composite constant types as well (e.g., arrays and structures/records). This discus
of string constants in a program applies equally well to these other data types. Large data structures that the
cannot represent as a primitive data type (i.e., hold in a general purpose register) almost always wind up store
memory and the program access the constant data exactly as it would access a variable of that type. On 1
modern systems, the compiler may place the constant data in write-protected memory to prevent the prog
from accidentally overwriting the constant data, but otherwise the “constant” is structurally equivalent to a va
able in every sense except the ability to change its value. You can place such “constant” declarations in an +
readonl y declaration section to achieve the HLA equivalent to the C/C++ code.

HLA also allows the declaration of composite constants irmdhet section. For example, the following is
perfect legal in HLA:

const
constArray :int32[4] :=1[1,2,3,4];

However, you should note that HLA maintains this array strictly at compile-time within the compiler. You can
not, for example, write HLA code like the following once you have the above declaration:

for( mov( 0O, ebx ); ebx < 4; inc( ebx )) do

mov( constArray[ ebx*4 ], eax );
stdout. puti 32( eax );

endf or;

The problem with this code is that constArray is not a memory location so you cannot refer to it using an 80x
addressing mode. In order for this array constant to be accessible (as an array) at run time, you have to m:
copy of it in memory. You can do this with an HLA declaration like the following:

readonly
rtConstArray :int32[4] := constArray; //Assum ng the declaration given earlier

Please consult the HLA documentation for more details on structured (composite) constants. Although th
are quite useful for HLA programmers, they aren’'t generally necessary when converting C/C++ code to HL
As such, they're a bit beyond the scope of this chapter so we won’t deal any farther with this issue here.

3.2.5:  Arithmetic Expressions in C and Assembly Language

One of the major advances that high level languages provided over low level languages was the use of &
braic-like expressions. High level language arithmetic expressions are an order of magnitude more readable
the sequence of machine instructions the compiler converts them into. However, this conversion process (fi
arithmetic expressions into machine code) is also one of the more difficult transformation to do efficiently anc
fair percentage of a typical compiler’s optimization phase is dedicated to handling this transformation.
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Computer architects have made extensive studies of typical source files and one thing they've discovere
that a large percentage of assignment statements in such programs take one of the following forms:

var
var
var
var
var

var 2;

const ant ;

op var2;

var op var?2
var2 op var3

Although other assignments do exist, the set of statements in a program that takes one of these form is gene
larger than any other group of assignment statements. Therefore, computer architects have generally optim
their CPUs to efficiently handle one of these forms.

The 80x86 architecture is what is known asve-address machine. In a two-address machine, one of the
source operands is also the destination operand. Consider the following 80x8@/tHin&truction:

add( ebx, eax ); ; conputes eax := eax + ebx;

Two-address machines, like the 80x86, can handle the first four forms of the assignment statement given
lier with a single instruction. The last form, however, requires two or more instructions and a temporary regist
For example, to compute “varl = var2 + var3;” you would need to use the following code (assamiagd
var 3 are memory variables and the compiler is keeping in the EAX register):

nmov( var2, eax );
add( var3, eax ); [//Result (varl) is in EAX

Once your expressions get more complex than the five forms given earlier, the compiler will have to gener
a sequence of two or more instructions to evaluate the expression. When compiling the code, most compilers
internally translate complex expressions into a sequence of “three address statements” that are semanti
equivalent to the more complex expression. The following is an example of a more complex expression an
sequence of three-address instructions that are representative of what a typical compiler might produce:

/1l complex = ( a+b)* (c-d) - elf;

templ = a + b;
temp2 = ¢ - d;
templ = tenpl * tenp2;
temp2 = e / f;

conplex = tenmpl - tenmp2;

If you study the five statements above, you should be able to convince yourself that they are semantically equ
lent to the complex expression appearing in the comment. The major difference in the computation is the int
duction of two temporary valuesefmpl andt enp2). Most compilers will attempt to use machine registers to
maintain these temporary values (assuming there are free registers available for the compiler to use).
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Table 3-5 lists most of the arithmetic operators used by C/C++ programs as well as their associativity.

Table 3-5:  C/C++ Operators, Precedence, and Associativity
Precedence Opgr_ato_r Associativity C/C++ Operators
Classification
1 (highest) Primary Scope | left to right
Resolution (C++)
2 Primary left to right O [1.->
3 Unary righttoleft | ++ -- + -1 ~ & *
(monadi® (type) sizeof new delete
4 Multiplicative lefttoright | * / %
(dyadi®)
5 Additive left to right | + -
(dyadic)
6 Bitwise Shift left to right | << >>
(dyadic)
7 Relational lefttoright | < > <= >=
(dyadic)
8 Equality left to right | == I=
(dyadic)
9 Bitwise AND left to right | &
(dyadic)
10 Bitwise Exclusive| lefttoright |
OR (dyadic)
11 Bitwise Inclusive | left to right |
OR (dyadic)
12 Logical AND left to right | &&
(dyadic)
13 Logical OR left to right I
(dyadic)
14 Conditional righttoleft | ? :
(triadic®)
15 Assignment righttoleft | = += -= *= /= <<= >>=
0= &= "= |:
16 (lowest) Comma left to right ,

a.Monadic means single operand .
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b.Dyadic means two operand .
c.Triadic means three operands .

3.2.5.1: Converting Simple Expressions Into Assembly Language

In this section we will consider the case where we need to convert a simple C/C++ expressions into assen
language. We've already discussed the conversion of the primary operators (in Table 3-5) into assembly |
guage, so we won't bother repeating that discussion here. Likewise, we've already discussed the address-of ¢
ator (“&”") and the dereferencing operator (“*”) so we’ll skip their discussions here as well.

Although the conversion of the remaining operators into assembly language is generally obvious, there al
few peculiarities. So it’s worthwhile to quickly discuss how to convert a simple expression of the form @X, X@
or X@Y (where ‘@’ represents one of the operators found in Table 3-5) into assembly language. Note that
discussion that follows deals with integer (signed or unsigned) only. The conversion of floating point expressic
into assembly language is actually easier than converting integer expressions. This book will not deal with ¢
verting floating point expressions into assembly language. There are two reasons for this: (1) once you see hc
convert integer expressions to assembly, you'll discover than floating point expression conversion is very simil
(2) the Win32 API uses very few floating point values. The whole reason for this chapter is to describe the C/C
to assembly conversion process so you can read and understand existing C/C++ documentation when wr
Windows assembly code. Since you won't find much Windows programming documentation that involves tl
use of floating point arithmetic, there is little need to present that information here. If you're interested in the st
ject, be sure to check out the discussion of this procdd®iArt of Assembly Language Programming.

Each of the examples appearing in this section will assume that you're operating on 32-bit integers produc
a 32-bit result (except in the case of boolean results, where this book will assume an 8-bit result is probably :
ficient). If you need to operate on eight or sixteen bit values, so sweat, just substitute the 8-bit or 16-bit regist
in place of the 32-bit registers you'll find in these examples. If you need to deal with larger values (e.g., lo
long ints), well, that's beyond the scope of this book; please see the section on extended precision arithmeti
The Art of Assembly Language for details on those operations.

Translating the ++ and -- (increment and decrement) operators from C/C++ to assembly language looks
first, like a trivial operation. You simply substituteiare ordec instruction for these operators. However, there
are two details that complicate this conversion by a slight amount: pre- and post- increment/decrement operat
and pointer increment/decrement operations.

Normally, when you apply the ++ (increment) operator to an integer variable, the ++ operator increments t
value of that variable by one. Similarly, when you apply the -- (decrement) operator to an integer variable, the
operator decrements that variable by one. However, C/C++ also allows you to apply the ++ and -- operator:
pointer variables as well as integers (pointers and integer variables are the only legal objects to which you r
apply these operators, though). The semantics of a pointer increment are different than the semantics of an
ger increment; applying the ++ operator to a pointer increments that pointer vayidieesi ze of the object at
which the pointer refers. For example, ipi is a pointer that points at a 32-bit integer value somewhere in mem-
ory, then++pi adds four tgi (rather than one); this causeto point at the next sequential memory location that
can hold a 32-bit integer (without overlapping the current integer in memory). Similarly, the -- (decrement) ope
ator subtracts the size of the object at which a pointer refers from the pointer’s valuei Seould subtract
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four frompi if pi points at a 32-bit integer. So the basic conversion of the ++ and -- operator to assembly la
guage is as Table 3-6 describes.

Table 3-6:  Converting C/C++ Increment/Decrement Operators to Assembly

C/C++ HLA?Z

inti; inc(i);
++i;
i++;
int *pi; add( @size(int32), i );
++pi;
pi++;

in_t I; dec(i);

int *pi; sub( @size(int32), 1);
~-pi;
pi--;

a.In the pointer examples, substitute the ap-

propriate type identifier when incrementing a
pointer to some type other than int32.

The increment and decrement operators may appear before or after a variable. If a C/C++ statement con
of a single variable with one of these operators, then whether you yse-therement/decrement form (sticking
the ++ or -- before the variable) or thest-increment/decrement form (placing the ++ or -- operator after the
variable) is irrelevant. In either case the end result is that the program will increment or decrement the varis
accordingly:

c++; // is equivalent to
++C;

/1 and

--c; [/l is equivalent to
c--;

If the C/C++ increment and decrement operators are attached to a variable within a larger expression, t
the issue of pre-increment/decrement versus post-increment/decrement makes a big difference in the final re
Consider the statements “a = ++c;” and “a = c++;”. In both cases the program will add one to vgdaablan-
ing c is an integer rather than a pointer to some object). However, these two statements are quite different
respect to the value they assign to variableThe first example here first increments the value amd then
assigns the value into a (hence the terrpre-increment since the program first incremenrtsnd then uses its
value in the expression). The second statement here first grabs the glassigns that ta, and then incre-
mentsc (hence the terrpost-increment since this expression incrementsfter using its value). Here’s some
sample HLA code that implements these two statements:
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/] a = ++c;

inc( ¢ ); /'l pre-increnment the value in c
mov( ¢, eax );
mov( eax, a );

/]l a = c++;

mov( ¢, eax );
mov( eax, a );
inc( ¢ ); /'l post-increnment the value in c

The C/C++ compiler effectively ignores the unary “+” operator. If you attach this operator to an operand,
does not affect that value of that operand in any way. It's presence in the language is mainly for notational
poses. It lets you specify positive numeric constants like +123.456 in the source file. Sometimes explici
place the “+” in front of such a constant can make the program more readable. However, since this oper:
rarely appears in real-world C/C++ programs, you're unlikely to see it.

The unary “-” operator negates the expression/variable that immediately follows it. The important thing 1
note is that this operator negates the value of the operand immediately following the “-” for use in the express
containing the operator. In particular, if a simple variable immediately follows the unary “-” this operator doesn
negate that operator directly. Therefore, you cannot use the 80x86 neg instruction on the variable except for
very special case where you have a statement like the following:

Instead, you must move the value of the variable into a register, negate the value of that register, and then
that register’s value within the expression. For example, consider the following:

o= -

nov( i, eax );
neg( eax );
nov( eax, | );

The unary “!I” operator is the logical not operator. If the sub-expression (i.e., variable) appearing immec
ately to the left of this operator is zero, the “I” operator returns one. If the value of that sub-expression is nc
zero, this operator returns zero. To convert this to assembly language, what you would do is test the operant
zero and set the result to one if it is zero, zero if the operand is not zero. You cancupgdheest ) instruc-
tion along with the 80x86et ne instruction to achieve this:

/1 Convert !i to assenbly, assune i is an int variable, |leave result in AL(or EAX)

cnp( i, 0);
setne( al );
/1 novsx( al, eax ); [// Do this if you need a 32-bit boolean result.

A very common construct you'll see in many C/C++ programs is a sub-expression like “Ili” (that is, apply th
logical not operator twice to the same value. Thigble logical negation converts the value into zero if it was
previously zero, to one if it was previously non-zero. Rather than execute the previous code fragment twice,
can easily achieve this effect as follows:

/1 Convert !!i to assenbly, assune i is an int variable, leave result in AL(or EAX)
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cnp( i, 0);
sete( al );
/1l movsx( al, eax ); // Do this if you need a 32-bit bool ean result.

The C/C++ unary “~" operator does a bitwise logical not on its operand (that is, it inverts all the bits of th
operand). This is easily achieved using the 8Gx86instruction as follows:

Il =~

nov( i, eax );
not ( eax );
mv( i, j );

For the special case of “i = ~i;” you can use the 80x@&6instruction to negate i directly, i.e., “not(i);”.

A simple C/C++ expression like “x =y * z;” is easily converted to assembly language using a code sequer
like the following:

Il x =y * z

nmov( vy, eax );
intmul ( z, eax );
nmov( eax, X );

/1 Note: if y is a constant, can do the follow ng:
/1 (because multiplication is conmutative, this also works if z is a constant,
/1 just swap z and y in this code if that is the case):

intmul (y, z, eax );
nmov( eax, X );

Technically, the nt mul instruction expects signed integer operands so you would normally use it only with
signed integer variables. However, if you're not checking for overflow (and C/C++ doesn’'t so you probab
won't need to either), then a two’s complement signed integer multiply produces exactly the same result as
unsigned multiply. Se€he Art of Assembly Language if you need to do a true unsigned multiply or an extended
precision multiply. Also note that the intmul instruction only allows 16-bit and 32-bit operands. If you need t
multiple two 8-bit operands, you can either zero extend them to 16 (or 32) bits or you can use thex80aB86

mul instructions (se&he Art of Assembly Language for more details).

The C/C++ division and modulo operators (*/” and “%”, respectively) almost translate into the same coc
sequence. This is because the 80%86andi di v instructions calculate both the quotient and remainder of a
division at the same time.

Unlike integer multiplication, division of signed versus unsigned operands does not produce the same res
Therefore, when dividing values that could potentially be negative, you must uséhestruction. Only use
thedi v instruction when dividing unsigned operands.

Another complication with the division operation is that the 80x86 does a 64/32-bit division (that is, it divide
a 64-bit number by a 32-bit number). Since both C/C++ operands are 32-bits you will need to sign extend (
signed integer operands) or zero extend (for unsigned integer operands) the numerator to 64 bits. Also remer
that thedi v andi di v instructions expect the numerator in the EDX:EAX register pair (or DX:AX for 32/16 divi-
sions, or AH:AL for 16/8 divisions, séide Art of Assembly Language for more details). The last thing to note is
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that these instructions return the quotient in EAX (AX/AL) and they return the remainder in EDX (DX/AH).
Here’s the code to translate an expression of the form “x=y/z;” into 80x86 assembly code:

I x =yl z -- assune all operands are unsigned.

mov( y, eax );
xor( edx, edx ); [// zero extend EAX to 64 bits in EDX EAX

div( z );
mov( eax, X ); /1 Quotient winds up in EAX
Il x =y %z, -- assune all operands are unsigned.

mov( y, eax );
xor( edx, edx ); [// zero extend EAX to 64 bits in EDX EAX

div( z );
mov( edx, X ); /1 Remai nder wi nds up in EDX
I x =yl z -- assune all operands are signed.

mov( y, eax );

cdq(); /1 sign extend EAX to 64 bits in EDX EAX
idiv( z);

mov( eax, X ); /1 Quotient winds up in EAX

Il x =y %z, -- assune all operands are signed.

mov( y, eax );

cdq(); /1 sign extend EAX to 64 bits in EDX EAX

idiv( z);

mov( edx, X ); /1 Remai nder wi nds up in EDX

Converting C/C++ expressions involving the “+7, “-”, “&”, *|”, and “&” operators into assembly language is

quite easy. A simple C/C++ expression of the form “a = b @ c;” (where ‘@’ represents one of these operatc
translates into the following assembly code:
/Il a=Db @c;

mov( b, eax );
instr( ¢, eax ); [/linstr = add, sub, and, or, xor, as appropriate
mov( eax, a );

The C/C++ programming language provides a shift left operator (“<<*). This dyadic operator returns th
result of its left operand shifted to the left the number of bits specified by its right operand. An expression of
form “a=b<<c;” is easily converted to one of two different HLA instruction sequences (chosen by whetaer
constant or a variable expression) as follows:

/l a =Db << c; -- c is a constant val ue.
nmov( b, eax );

shl ( ¢, eax );
nov( eax, a);
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/Il a =b << c; -- cis avariable value in the range 0..31

mov( b, eax );
mov( (type byte c), cl ); [//assume H O bytes of c are all zero.
shl ( cl, eax );
mov( eax, a );

C/C++ also provides a shift right operator, “>>". This translates to a sequence that is very similar to the cc
version of the “<<* operator with one caveat: the 80x86 supports two different shift right instrustioshift
logical right) andsar (shift arithmetic right). The C/C++ language doesn’t specify which shift you should use.
Some compilers always use a logical shift right operation, some use a logical shift right for unsigned operal
and they use an arithmetic shift right for signed operands. If you don’t know what you're supposed to use wr
converting code, using a logical (unsigned) shift right is probably the best choice because this is what most |
grammers will expect. That being the case, the shift right operator (“*>>") appearing in an expression lil
“a=b>>c;” translates into 80x86 code thusly:

/1l a=Db > c; -- c is a constant val ue.

nov( b, eax );
shr( ¢, eax );
nov( eax, a );

/Il a="b > c; -- cis avariable value in the range 0..31

nov( b, eax );
nov( (type byte c), cl ); [/assume H O bytes of c are all zero.
shr( cl, eax );
nov( eax, a );

If you decide you need to use an arithmetic (signed) shift right operation, simply substitfide shr in this
code.

The logical OR and logical AND operators (“||” and “&&”) return the values zero or one based on the value
of their two operands. The logical OR operator (“||”) returns one if either or both operands are non-zero;
returns zero if both operands are zero. The logical AND operator (“&&”) returns zero if either operand is zero,
returns one only if both operands are non-zero. There is, however, one additional issue to consider: these o}
tors employshort-circuit boolean evaluation. When computing “X && Y” the logical AND operator will not
evaluate Y if it turns out that X is false (there is no need because if X is false, the full expression is always fals
Likewise, when computing “X || Y” the logical OR operator will not evaluate Y if it turns out that X is true (again.
there will be no need to evaluate Y for if X is true the result is true regardless of Y’s value). Probably for t
majority of expressions it doesn’t really matter whether the program evaluates the expression using short-cir:
evaluation orcomplete boolean evaluation; the result is always the same. However, because C/C++ promises
short-circuit boolean evaluation semantics, many programs are written to depend on these semantics and will
if you recode the expression using complete boolean evaluation. Consider the following two examples that de
onstrate two such situations:

if( pi !'= NULL && *pi == 5 )

/1 do something if *pi ==
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if( --x == 0 || ++y < 10 )
{

}

/1l do sonmething if x == 0 or y < 10

The firsti f statement in this example only works properly in all cases when using short-circuit evaluation. TF
left-hand operand of the “&&” operator evaluates falge its NULL. In that case, the code will not evaluate the
right operand and this is a good thing for if it did it would dereference a NULL pointer (which will raise ar
exception under Windows). In the second example above, the result is not as drastic were the system to
short-circuit evaluation rather than complete boolean evaluation, but the program would produce a differe
result iny when using complete boolean evaluation versus short-circuit boolean evaluation. The reason for t
difference is that the right-hand side of the expression incremeastsnething that doesn’t happen if the left
operand evaluates true.

Handling short-circuit boolean evaluation almost always means using conditional jumps to skip around
expression. For example, given the expression “Z = X && Y” the way you would encode this using pure shor
circuit evaluation is as follows:

xor ( eax, eax ); /1 Assunme the result is false.
cnp( eax, X ); /1 See if X is false.
j e isFal se;
cnp( eax, Y ); /1 See if Y is false.
j e isFal se;
inc( eax ); /1 Set EAX to 1 (true);
i sFal se:
nmov( eax, Z); /1l Save 0/1 in Z

Encoding the logical OR operator using short-circuit boolean evaluation isn’t much more difficult. Here’s a
example of how you could do it:

xor( eax, eax ); /1l Assunme the result is false.
cnp( eax, X); /1 See if X is true.
jne isTrue;
cnp( eax, Y ); /1 See if Y is false.
j e isFal se;
i sTrue:
inc( eax ); /1 Set EAX to 1 (true);
i sFal se:
mov( eax, Z); /1 Save 0/1 in Z

Although short-circuit evaluation semantics are crucial for the proper operation of certain algorithms, most
the time the logical AND and OR operands are simple variables or simple sub-expressions whose results
independent of one another and quickly computed. In such cases the cost of the conditional jumps may be r
expensive than some simple straight-line code that computes the same result (this, of course, depends entire
which processor you're using in the 80x86 family). The following code sequence demonstrates one (Somew
tricky) way to convert “Z = X && Y” to assembly code, assumigndy are both 32-bit integer variables:

xor( eax, eax ); // Initialize EAX with zero
cnp( X, 1); /'l Note: sets carry flag if X == 0, clears carry in all other cases.
adc( 0, eax ); /I EAX =0 if X!=1, EAX=1if X =0.
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cnp( Y, 1); /'l Sets carry flag if Y == 0, clears it otherw se.
adc( 0, eax ); /1 Adds in one if Y =0, adds in zero if Y != 0.
setz( al ); /I EAX = X && Y

mov( eax, Z);

Note that you cannot use the 80x86 and instruction to nxaagdy together to test if they are both non-zero. For

if X contained $55 (0x55) andcontained $aa (0Oxaa) their bitwise AND (which #né instruction produces) is
zero, even though both values are logically true and the result should be true. You may, however, use the 8(
or instruction to compute the logical OR of two operands. The following code sequence demonstrates how
compute “Z = X || Y;” using the 80x86 instruction:

xor( eax, eax ); [/ Clear EAX's H O bytes

nov( X, ebx );

or( Y, ebx );

setnz( al ); /1 Sets EAX to one if X || Y (in EBX) is non-zero.

The conditional expression in C/C++ is unusual insofar as it is the only ternary (three-operand) operator t
C/C++ provides. An assignment involving the conditional expression might be

a=(x!=y) ?trueval : falseVal;

The program evaluates the expression immediately to the left of the “?” operator. If this expression evaluates
(non-zero) then the compiler returns the value of the sub-expression immediately to the right of the “?” opera
as the conditional expression’s result. If the boolean expression to the left of the “?” operator evaluates false (
zero) then the conditional expression returns the result of the sub-expression to the right of the “:” in the expr
sion. Note that the conditional operator does not evaluate the true expresseal( in this example) if the
condition evaluates false. Likewise, the conditional operator does not evaluate the false expeessiaal (in

this example) if the expression evaluates true. This is similar to short-circuit boolean evaluation in the “&&” ar
“||” operators. You encode the conditional expression in assembly as though it werel ae statement, e.g.,

mov( fal seval, edx ); /'l Assume expression eval uates fal se

mov( X, eax );

cmp( eax, y );

j ne Theyr eNot Equal

mov( trueVal, edx ); /1 Assunption was incorrect, set EDX to trueVal
Theyr eNot Equal :

mov( edx, a ); /1 Save trueVal or falseVal (as appropriate) in a.

C/C++ provides a set of assignment operators. The are the following:
= 4= -= &= A~= | = *= [= OF <<= >>=

Generally, C/C++ programmers use these assignment operators as stand-alone C/C++ statements, but
may appear as subexpressions as well. If the C/C++ program uses these expressions as stand-alone state
(e.g., “x +=y;") then the statement “x @=y;” is completely equivalent to “x = X @ y;” where ‘@’ represents the
operator above. Therefore, the conversion to assembly code is fairly trivial, you simply use the conversions we
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been studying throughout this section. Table 3-7 lists the equivalent operations for each of the assignment o

tors.
Table 3-7:  Converting Assignment Operators To Assembly Language
C/C++ C/C++ Equivalent
Operator Example To This C/ HLA Encoding
P P C++ Code
= X=Y; X=Yy; mov(y, eax );
mov( eax, X );
+= a+=b; a=a+b;| mov(b,eax);
add( eax, a);
-= a-=b; a=a-b;| mov(b,eax);
sub( eax, a );
&= a&=b; a=a&hb; | mov(b, eax);
and( eax, a);
|= al=Db; a=al|b;| mov(b,eax),
or( eax, a );
A= a’=b; a=a”b;| mov(b, eax);
xor( eax, a);
<<= a<<=b; a=a<<Db; mov((type byte b),cl);
shi(cl, a);
>>= a>>=b; a=a>>b; mov( (type byte b), cl);
shr(cl, a);
*= a*=b; a=a*b; | mov(a,eax);
intmul( b, eax);
mov( eax, a );
/= al=b; a=alb; mov( a, eax );
cdq; // or xor( edx, edx );
div( b);
mov( eax, a ); // Store away quotient
%= a %= b; a=a%b;] mov(a,eax);

cdq; // or xor( edx, edx );
div( b);
mov( edx, a ); // Store away remaindg

ler

The comma operator in C/C++ evaluates two subexpressions and then throws the result of the first expres
away (i.e., it computes the value of the first/left expression strictly for any side effects it produces). In gener
just convert both sub-expressions to assembly using the rules in this section and then use the result of the se
sub-expression in the greater expression, e.g.,
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Il x = ( y=z, a+b );

mov( z, eax );
mov( eax, Yy );
mov( a, eax );
add( b, eax );
mov( eax, X );

3.2.5.2: Operator Precedence

The precedence of an operator resolves the ambiguity that is present in an expression involving several dif
ent operands. For example, given the arithmetic expression “4+2*3” there are two possible values we could Ic
cally claim this expression produces: 18 or 10 (18 is achieve by adding four and two then multiplying their st
by three; 10 is achieved by multiplying two times three and adding their product together with four). Now yc
may be thoroughly convinced that 10 is toerect answer, but that's only because by convention most people
agree that multiplication has a higher precedence than addition, so you must do the multiplication first in t
expression (that is, you've followed an existing convention in order to resolve the ambiguity). C/C++ also has
own precedence rules for eliminating ambiguity. In Table 3-Hotbesdence level appears in the left-most col-
umn. Operators with a lower precedence level have a higher precedence and, therefore, take precedence
other operators at a lower precedence. You'll notice that the multiplication operator in C/C++ (“*”) has a hight
precedence than addition (“+”) so C/C++ will produce 10 for the expression “4+2*3” just as you've been taug
to expect.

Of course, you can always eliminate the ambiguity by explicitly specifying parentheses in your expressior
Indeed, the whole purpose of precedence is to implicitly specify where the parentheses go. If you have two 0|
ators with different precedences (say ‘# and ‘@’) and three operands, and you have an expression of the f
X#Y@Z then you must place parentheses around the operands connected by the operator with the higher pi
dence. In this example, if ‘@’ has a higher precedence than # you'd wind up with X#(Y@2Z). Conversely, |
‘# has a higher precedence than ‘@’ you'd wind up with (X#Y)@Z.

An important fact to realize when converting C/C++ code into assembly language is that precedence o
controls the implicit placement of parentheses within an expression. That is, precedence controls which o
ands we associate with a given operator. Precedence does not necessarily control the order of evaluation ¢
operands. For example, consider the expression “5*4+2+3”. Since multiplication has higher precedence tl
addition, the “5” and “4” operands attach themselves to the “*” operator (rather than “4” attaching itself to th
“+” operator). That is, this expression is equivalent to “(5*4)+2+3”. The operator precedence, contrary to pop
lar opinion, does not control the order of the evaluation of this expression. We could, for example, compute
sub-expression “2+3” prior to computing “5*4”. You still get the correct result when computing this particula
addition first.

When converting a complex expression to assembly language, the first step is to explicitly add in the par
theses implied by operator precedence. The presence of these parentheses will help guide the conversi
assembly language (we’ll cover the exact process a little later in this chapter).

3.2.5.3: Associativity

Precedence defines where the parentheses go when you have three or more operands separated by di
operators at different precedence levels. Precedence does not deal with the situation where you have thre
more operands separated by operators at the same precedence level. For example, consider the following e»
sion:
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5-4- 3

Does this compute “5 - (4 - 3);” or does it compute “ (5 - 4) -3;"? Precedence doesn’'t answer the question for
because the operators are all the same. These two expressions definitely produce different results (the
expression produces 5-1=4 while the second produces 1-3=-2). Associativity is the mechanism by which
determine the placement of parentheses around adjacent operators that have the same precedence level.

Operators generally have one of three different associativities: left, right, and none. C/C++ doesn’'t have ¢
non-associative operators, so we’ll only consider left associative and right associative operators here. Table
lists the associativity of each of the C/C++ operators (left or right). If two left associative operators are adjace
to one another, then you place the left pair of operands and their operator inside parentheses. If two right ass
tive operators appear adjacent to one another in an expression, then you place a pair of parentheses arour
right-most pair of operands and their operator, e.g.,

5 3 - becones- (5- 4 - 3
X Z

4 -
y = - becones- X =(y = 2)

Like precedence, associativity only controls the implied placement of the parentheses within an expressi
It does not necessarily suggest the order of evaluation. In particular, consider the following arithmetic expr
sion:

5+4+3+2+1
Because addition is left associative, the implied parentheses are as follows:
(((5+4) +3) +2) +1

However, a compiler is not forced to first compute 5+4, then 9 + 3, then 12 + 2, etc. Because addition is cc
mutative, a compiler can rearrange this computation in any way it sees fit as long as it produces the same resi
this second expression.

3.2.5.4: Side Effects and Sequence Points

A side effect is any modification to the global state of a program other than the immediate result a piece
code is producing. The primary purpose of an arithmetic expression is to produce the expression’s result.
other changes to the system’s state in an expression is a side effect. The C/C++ language is especially guil
allowing side effects in an arithmetic expression. For example, consider the following C/C++ code fragment:

i =i +*pi++ + ()] =2) * --k

This expression exhibits four separate side effects: the decremeat tife end of the expression, the assign-
ment toj prior to using ' s value, the increment of the poinggr after dereferencingi , and the assignment to

i (generally, if this expression is converted to a stand-alone statement by placing a semicolon after the exp
sion, we consider the assignment tim be the purpose of the statement, not a side effect).

Another way to create side effects within an expression is via a function call. Consider the following C+
code fragment:

int k;
int m
int n;
int hasSideEffect( int i, int&j )
{
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k = k + 1;
hasSideEffect =i + j;
o=

m = hasSi deEffect( 5, n);

In this example, the call to tivassSi deEf f ect function produces two different side effects: (1) the modification
of the global variabl& and the modification of the pass by reference paramdsatual parameter isin this

code fragment). The real purpose of the function is to compute the function’s return result; any modification
global values or reference parameters constitutes a side effect of that function, hence the invocation of su
function within an expression causes the expression to produce side effects. Note that although C does not
vide “pass by reference” parameters as C++ does, you can still pass a pointer as a parameter and modif
dereferenced object, thus achieving the same effect.

The problem with side effects in an expression is that most C/C++ compilers do not guarantee the orde!
evaluation of the components that make up an expression. Many naive programmers (incorrectly!) assume
when they write an expression like the following:

b= 1(x) +9(x);

the compiler will emit code that first calls functib@and then calls functiog. The C and C++ programming lan-
guages, however, do not specify this order of execution. That is, some compilers will indeediuatdi callg,

and then add their return results together; some other compilers, however, mdystathenf , and then com-

pute the sum of the function return results. That is, the compiler could translate the expression above into ei
of the following simplified code sequences before actually generating native machine code:

f(x) + 9(x);”"

/1 Conversion #1 for “i

templ = f(x);
temp2 = g(x);
i:=templ + tenp2;
/1 Conversion #2 for “i = f(x) + g(x);”
templ = g(x);
temp2 = f(x);

i = tenmp2 + tenpl;

Note that issues like precedence, associativity, and commutativity have no bearing on whether the compiler e
uates one sub-component of an expression before another. For example, consider the following arithm
expression and several possible intermediate forms for the expression:

I =1(x) - g(x) * h(x);

/1 Conversion #1 for this expression:

templ = f(x);
temp2 = g(x);
temp3 = h(x);

tenp4 = tenp2 * tenp3
j = tenmpl - tenp4;
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/1 Conversion #2 for this expression:

tenp2 = g(x);
temp3 = h(x);
templ = f(x);
tenpd4d = tenmp2 * tenp3

j = templ - tenp4,

/1 Conversion #3 for this expression:

temp3 = h(x);
templ = f(x);
tenp2 = g(x);

tenpd4d = tenmp2 * tenp3
j = tenmpl - tenp4,

Many other combinations are possible.

The specification for the C/C++ programming languages explicitly leave the order of evaluation undefine
This may seem somewhat bizarre, but there is a good reason for this: sometimes a compiler can produce &
machine code by rearranging the order it uses to evaluate certain sub-expressions within an expression.
attempt on the part of the language designer to force a particular order of evaluation on a compiler’s implemet
may limit the range of optimizations possible. Therefore, very few languages explicitly state the order of evalt
tion for an arbitrary expression.

There are, of course, certain rules that most languages do enforce. Though the rules vary by language, t
are some fairly obvious rules that most languages (and their implementation) always follow because intuiti
suggests the behavior. Probably the two most common rules that you can count on are the facts that all
effects within an expression occur prior to the completion of that statement’s execution. For example, if the fut
tion f modifies the global variable then the following statements will always print the value afterf modi-
fies it:

o= f(x);
printf( “x= %\n", x );

Another rule you can count on is that the assignment to a variable on the left hand side of an assignn
statement does not get modified prior to the use of that same variable on the right hand side of the expres:
l.e., the following will not write a temporary value into variablentil it uses the previous value o#vithin the
expression:

n="f(x) +g(x) - n

Because the order of the production of side effects within an expression is undefined in C/C++, the resul
the following code is generally undefined:

int incN( void )

{
incN = n;
n:.=n+ 1;
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n = 2;
printf( “%\n”, incN() + n*2 );

The compiler is free to first call thecN function (son will contain three prior to executing the sub-expression
“n*2”) or the compiler may first compute “n*2” and then call theN function. As a result, one compilation of
this statement could produce the output “8” while a different compilation of this statement might produce tt
output “6”. In both cases would contain three after the execution of thet el n statement, but the order of
computation of the expression in the writeln statement could vary.

Don’'t make the mistake of thinking you can run some experiments to determine the order of evaluation.
the very best, such experiments will tell you the order a particular compiler uses. A different compiler may ve
well compute sub-expressions in a different order. Indeed, the same compiler might also compute the comr
nents of a subexpression differently based on the context of that subexpression. This means that a compiler n
compute the expression using one ordering at one point in the program and using a different ordering somew
elsein the same program. Therefore, it is very dangerous to “determine” the ordering your particular compiler
uses and rely on that ordering. Even if the compiler is consistent in the ordering of the computation of si
effects, what'’s to prevent the compiler vendor from changing this in a later version of the compiler?

As noted earlier, most languages do guarantee that the computation of side effects completes before ce
points in your program’s execution. For example, almost every language guarantees the completion of all <
effects by the time the statement containing the expression completes execution. The point at which a comy
guarantees that the computation of a side effect is completed is cadtpabrace point. The end of a statement is
an example of a sequence point.

In the C programming language, there are several important sequence points in addition to the semicolo
the end of a statement. C provides several important sequence points within expressions, as well. Beyond the
of the statement containing an expression, C provides the following sequence points:

expressi onl, expression2 (the C conma operator in an expression)
expressi onl && expressi on2 (the C logical AND operator)
expressionl || expression2 (the C logical OR operator)

expressionl ? expression2 : expression3 (the C conditional expression operator)

cl? guarantees that all side effectseipr essi onl1 are completed before the computatiorexbr essi on2 or

expr essi on3 in these examples (note that for the conditional expression, C only evaluatesome:o§i on2

or expr essi on3, so only the side effects of one of these sub-expressions is ever done on a given execution of
conditional expression).

To understand how side effects and sequence points can affect the operation of your program in non-obvi
ways, consider the following example in C:

int array[6] = {0, 0, O, O, 0, O};

int i;

i = 0;
array[i] =i ++

12.C++ compilers generally provide the same sequence points at C, although the original C++ standard did not define any
sequence points.
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Note that C does not define a sequence point across the assignment operator. Therefore, the C language ma
guarantees about whether the expression “i” used as an indexiatois evaluated before or after the program
increments on the right hand side of the assignment operator. Note that the fact that the “++” operator is a pt
increment operation only implies that “i++” returns the value pfior to the increment; this does not guarantee
that the compiler will use the pre-increment valué ahywhere else in the expression. The bottom line is that
the last statement in this example could be semantically equivalent to either of the following statements:

1
+
+

array|[ 0]
- Or -
array[ 1]

1
+
+

The C language definition allows either form and, in particular, does not require the first form simply because
array index appears in the expression before the post-increment operator.

To control the semantics of the assignmendrtoay in this example, you will have to ensure that no part of
the expression depends upon the side-effects of some other part of the expression. That is, you cannot botl
the value of at one point in the expression and apply the post-increment operatan smother part of the
expression unless there is a sequence point between the two uses. Since no such sequence point exists be
the two uses df in this statement, the result is undefined by the C language standard (note that the standard a
ally says that the result ismdefined; therefore, the compiler could legally substitag value fori as the array
index value, though most compilers will substitute the valuelafore or after the increment occurs in this par-
ticular example).

Though this comment appears earlier in this section, it is worth being redundant to stress an important f:
operator precedence and associativity do not control when a computation takes place in an expression. E
though addition is left associative, the compiler may compute the value of the addition operator’s right opera
before it computes the value of the addition operator’s left operand. Precedence and associativity control how
compiler arranges the computation to produce the final result. They do not control when the program compt
the subcomponents of the expression. As long as the final computation produces the results one would expe
the basis of precedence and associativity, the compiler is free to compute the subcomponents in any order a
any time it pleases.

3.2.5.5: Translating C/C++ Expressions to Assembly Language

Armed with the information from the past several sections, it is now possible to intelligently describe how
convert complex arithmetic expressions into assembly language.

The conversion of C/C++ expressions into assembly language must take into consideration the issues of o
ator precedence, associativity, and sequence points. Fortunately, these rules only describe which operators
must apply to which operands and at which points you must complete the computation of side effects. They
not specify the order that you must use when computing the value of an expression (other than completing
computation of side effects before a given point). Therefore, you have a lot of latitude with respect to how y
rearrange the computation during your conversion. Because the C/C++ programming language has some rel
rules with regard to the order of computation in some expression, the result of a computation that relies on o
side effects between a pair of sequence points is undefined. However, just because the language doesn't ¢
the result, some programmers will go ahead and assume that the compiler computes results on a left to right |
within the statement. That is, if two subexpressions modify the value of some variable, the programmer v
probably (though errantly) assume that the left-most side effect occurs first. So if you encounter such an ur
fined operation in a C/C++ code sequence that you're converting to assembly, the best suggestion is to com
the result using a left-to-right evaluation of the expression. Although this is no guarantee that you’ll produ
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what the original programmer intended, chances are better than 50/50 that this will produce the result that |
grammer was expecting.

A complex expression that is easy to convert to assembly language is one that involves three terms and
operators, for example:

W=w-y - z;

Clearly the straight-forward assembly language conversion of this statement will requirebtimstruc-
tions. However, even with an expression as simple as this one, the conversion is not trivial. There arevactually
ways to convert this from the statement above into assembly language:

nov( w, eax );
sub( y, eax );
sub( z, eax );
nov( eax, w);
and
nov( y, eax );
sub( z, eax );
sub( eax, w);

The second conversion, since it is shorter, looks better. However, it produces an incorrect result. Associati
is the problem. The second sequence above computes “W =W - (Y - Z);” which is not the same as “W = (W -
- Z;". How we place the parentheses around the subexpressions can affect the result. Note that if you are i
ested in a shorter form, you can use the following sequence:

nov( y, eax );
add( z, eax );
sub( eax, w);
This computes “W=W-(Y+Z);". This is equivalent to “W = (W -Y) - Z;".
Precedence is another issue. Consider the C/C++ expression:
X=W*Y + Z
Once again there are two ways we can evaluate this expression:
X=(W*Y) + Z

or
X

W* (Y + 2);

However, C/C++'’s precedence rules dictate the use of the first of these statements.

When converting an expression of this form into assembly language, you must be sure to compute the sul
pression with the highest precedence first. The following example demonstrates this technique:

Il w=x+vy * z;

mov( x, ebx );

mov( y, eax ); /1 Miust conmpute y*z first since “*”
intmul ( z, eax ); /'l has higher precedence than “+".
add( ebx, eax );

mov( eax, w);
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The precedence and associativity rules determine the order of evaluation. Indirectly, these rules tell y
where to place parentheses in an expression to determine the order of evaluation. Of course, you can alway
parentheses to override the default precedence and associativity. However, the ultimate point is that your ast
bly code must complete certain operations before others to correctly compute the value of a given express
The following examples demonstrate this principle:

/Il w=Xx-vYy - 2z

mov( X, eax ); /1 Al'l the sane operator, so we need
sub( y, eax ); /1 to evaluate fromleft to right

sub( z, eax ); /'l because they all have the sane

mov( eax, w); /'l precedence and are |eft associative

/Il w=Xx+vy * z

mov( y, eax ); /1 Must compute Y * Z first since
intmul ( z, eax ); /1 multiplication has a higher
add( x, eax ); /'l precedence than addition

mov( eax, w);

Il w=x1/lvy -z

mov( X, eax ); /1 Here we need to conpute division
cdq() ; /1 first since it has the highest
idiv( y, edx:eax ); // precedence.

sub( z, eax );

mov( eax, w);

/I w=x?%*y* z

mov( y, eax ); /1 Addition and multiplication are
intmul ( z, eax ); /'l commutative, therefore the order
intmul ( x, eax ); /1 of evaluation does not matter

mov( eax, w);

There is one exception to the associativity rule. If an expression involves multiplication and division it is gel
erally better to perform the multiplication first. For example, given an expression of the form:

W= XY * Z /1 Not e: thisis;_‘xz not y"_XE!

It is usually better to compute z and then divide the result byrather than divide by Y and multiply the
qguotient byz. There are two reasons this approach is better. First, remember thatthestruction always
produces a 64 bit result (assuming 32 bit operands). By doing the multiplication first, you autonsigically
extend the product into the EDX register so you do not have to sign extend EAX prior to the division. This save
the execution of thedq instruction. A second reason for doing the multiplication first is to increase the accurac
of the computation. Remember, (integer) division often produces an inexact result. For example, if you comp
5/2 you will get the value two, not 2.5. Computing (5/2)*3 produces six. However, if you compute (5*3)/2 yol
get the value seven which is a little closer to the real quotient (7.5). Therefore, if you encounter an expressiol
the form:

w = x/y*z;
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You can usually convert it to the assembly code:

nov( X, eax );

imul ( z, eax ); /1 Note the use of IMJ, not | NTMIL
idiv( y, edx:eax );

nov( eax, w);

Of course, if the algorithm you're encoding depends on the truncation effect of the division operation, you cant
use this trick to improve the algorithm. Moral of the story: always make sure you fully understand any expressi
you are converting to assembly language. Obviously if the semantics dictate that you must perform the divis
first, do so.

Consider the following C/C++ statement:
wW=X-Y%*X;
This is similar to a previous example except it uses subtraction rather than addition. Since subtraction is not ¢
mutative, you cannot compuge* z and then subtraet from this result. This tends to complicate the conver-
sion a tiny amount. Rather than a straight forward multiply and addition sequence, you'll havextintoaal
register, multiplyy andz leaving their product in a different register, and then subtract this product feam,

mov( X, ebx );
nmov( vy, eax );
intmul ( x, eax );
sub( eax, ebx );
nmov( ebx, w);

This is a trivial example that demonstrates the neetbigoorary variablesin an expression. This code uses the
EBX register to temporarily hold a copy »ofuntil it computes the product gf andz. As your expressions
increase in complexity, the need for temporaries grows. Consider the following C/C++ statement:

w=(a+b)* (y+2),

Following the normal rules of algebraic evaluation, you compute the subexpressions inside the parentheses
the two subexpressions with the highest precedence) first and set their values aside. When you've compute
values for both subexpressions you can compute their sum. One way to deal with complex expressions like
one is to reduce it to a sequence of simple expressions whose results wind up in temporary variables. For e
ple, we can convert the single expression above into the following sequence:

Tenp, = a + b;
Tenp, =y + z;
w = Tenp; * Tenpy;

Since converting simple expressions to assembly language is quite easy, it's how a snap to compute
former, complex, expression in assembly. The code is

nov( a, eax );

add( b, eax );

nov( eax, Tenpl );
nov( y, eax );

add( z, eax );

nov( eax, Tenp2 );
nov( Tenpl, eax );
intnul ( Tenp2, eax );

Page 197



mov( eax, w);

Of course, this code is grossly inefficient and it requires that you declare a couple of temporary variables
your data segment. However, it is very easy to optimize this code by keeping temporary variables, as mucl
possible, in 80x86 registers. By using 80x86 registers to hold the temporary results this code becomes:

mov( a, eax
add( b, eax
mov( y, ebx
add( z, ebx );
i ntmul ( ebx, eax );
mov( eax, w);

— N N

Yet another example:
X = (y+z) * (a-b) / 10;

This can be converted to a set of four simple expressions:

Templ = (y+z)
Tenp2 = (a-b)
Tenpl = Tenpl * Tenp2

X = Templ / 10

You can convert these four simple expressions into the assembly language statements:

mov( y, eax ); /1 Conpute eax = y+z

add( z, eax );

mov( a, ebx ); /1 Conmpute ebx = a-b

sub( b, ebx );

i mul ( ebx, eax ); /1 This also sign extends eax into edx.

idiv( 10, edx:eax );
mov( eax, X );

The most important thing to keep in mind is that you should attempt to keep temporary values, in registe
Remember, accessing an 80x86 register is much more efficient than accessing a memory location. Use met
locations to hold temporaries only if you've run out of registers to use.

Ultimately, converting a complex expression to assembly language is little different than solving the expre
sion by hand. Instead of actually computing the result at each stage of the computation, you simply write |
assembly code that computes the result. Since you were probably taught to compute only one operation at a1
this means that manual computation works on “simple expressions” that exist in a complex expression.
course, converting those simple expressions to assembly is fairly trivial. Therefore, anyone who can solve a ¢
plex expression by hand can convert it to assembly language following the rules for simple expressions.

As noted earlier, this text will not consider the conversion of floating point expressions into 80x86 assemt
language. Although the conversion is slightly different (because of the stack-oriented nature of the FPU regis
file), the conversion of floating point expressions into assembly language is so similar to the conversion of inte
expressions that it isn't worth the space to discuss it here. For more insight into this type of expression cony
sion, please sekhe Art of Assembly Language.
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3.2.6:  Control Structures in C and Assembly Language

The C and C++ languages provide several high-lgvettured control statements. Among these, you will
find thei f/ el se statement, thehi | e statement, theo/ whi | e statement, théor statement, thér eak/ con-
tinue/ return statements, and th@t o statement. C/C++ also provides the function call, but we’ll deal with
that control structure later in this chapter. The C++ language provides exception handling facilities. However,
you're unlikely to encounter C++isry/ cat ch statements in Win32 APl documentation, we won'’t bother dis-
cussing the conversion of those statements into assembly language in this book. If you have need to incorpc
exception handling into your HLA programs, please check out the HlyA. excepti on. . endt ry Sstatements
in the HLA reference manual.

One advantage of a high level assembler like HLA is that it also provides high-level, structured, control sta
ments. Although not as sophisticated as the similar statements you'll find in C/C++ (particularly with respect
the boolean expressions the C/C++ statements allow), it’s fairly trivial to convert about 75-90% of the typical
C++ control statements you’ll encounter into assembly language (when using HLA).

This book will not cover the conversion of high level control structures into low-level assembly code (i.e
using conditional jumps and comparisons rather than the high-level control structures found in HLA). If yc
wish to use that conversion process and you're not comfortable with it, pled3$e seeof Assembly Language
for more details.

For the most part, this book assumes that the reader is already an accomplished assembly language proc
mer. However, because many assembly language programmers might not have bothered to learn HLA'S |
level control structures, the following sections will describe the semantics of the HLA structured control stat
ments in addition to describing how to convert C/C++ control structures into their equivalent assembly langue
statements. Since C/C++ does not provide as many control structures as C/C++, this section will not bot
describing all of HLA's high level control structures - only those that have a C/C++ counterpart. For more deta
on HLA's high level control statements, please consult the HLA Reference Manual.

3.2.6.1: Boolean Expressions in HLA Statements

Several HLA statements require a boolean (true or false) expression to control their execution. Examp
include thei f, while, andrepeat..until statements. The syntax for these boolean expressions represent
the greatest limitation of the HLA high level control structures. In many cases you cannot convert the cori
sponding C/C++ statements directly into HLA code.

HLA boolean expressions always take the following fdfins

fl ag_specification
I'flag_specification
register

I'register

Bool ean_vari abl e

I Bool ean_vari abl e

nmemreg rel op memreg_const

A flag_specification may be one of the following symbols:
* @c carry: True if the carry is set (1), false if the carry is clear (0).
* @nc no carry: True if the carry is clear (0), false if the carry is set (1).

13.There are a few additional forms, some of which we’ll cover a little later in this section..
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* @z zero: True if the zero flag is set, false if it is clear.

* @nz not zero: True if the zero flag is clear, false if it is set.

» @o overflow: True if the overflow flag is set, false if it is clear.

* @no no overflow: True if the overflow flag is clear, false if it is set.
» @s sign: True if the sign flag is set, false if it is clear.

* @ns no sign: True if the sign flag is clear, false if it is set.

A register operand can be any of the 8-bit, 16-bit, or 32-bit general purpose registers. The expression ev
ates false if the register contains a zero; it evaluates true if the register contains a non-zero value.

If you specify a boolean variable as the expression, the program tests it for zero (false) or non-zero (tr
Since HLA uses the values zero and one to represent false and true, respectively, the test works in an intu
fashion. Note that HLA requires such variables be of type boolean. HLA rejects other data types. If you want
test some other type against zero/not zero, then use the general boolean expression discussed next.

The most general form of an HLA boolean expression has two operands and a relational operator. Table
lists the legal combinations.

Table 3-8:  Relational Operators in HLA

Left Relational

Operand Operator Right Operand
—0or ==
. Memory Variable,
Memory Variable <>ori=
< Register,
or
<= or
Register >
Constant
>=

Note that both operands cannot be memory operands. In fact, if you thinkRoglth®perand as the source
operand and theeft Operand as the destination operand, then the two operands must be the saom that
instruction allows. This is the primary limitation to HLA boolean expressions and the biggest source of pro
lems when converting C/C++ high level control statements into HLA code.

Like thecnp instruction, the two operands must also be the same size. That is, they must both be byte of
ands, they must both be word operands, or they must both be double word operands. If the right operand is a
stant, it’s value must be in the range that is compatible with the left operand.

There is one other issue: if the left operand is a register and the right operand is a positive constant or anc
register, HLA uses amsigned comparison. You will have to use HLA'S type coercion operator (e.g., “(type int32
eax)” ) if you wish to do a signed comparison.

Here are some examples of legal boolean expressions in HLA:

@

Bool _var

Page 200



a

ESI

EAX < EBX
EBX > 5
i32 < -2
i8 > 128
al <i8

HLA uses the “&&” operator to denote logical AND in a run-time boolean expression. This is a dyadic (two
operand) operator and the two operands must be legal run-time boolean expressions. This operator evaluate
if both operands evaluate to true. Example using an HL#tatement:

if( eax >0 & ch = *a” ) then

mov( eax, ebx );
mov( * *, ch);

endi f;

The twonov statements appearing here execute only if EAX is greater thaarme@H is equal to the character
‘a’. If either of these conditions is false, then program execution skips ovemntiveisistructions.

Note that the expressions on either side of the “&&” operator may be any legal boolean expression, the
expressions don’t have to be comparisons using the relational operators. For example, the following are all le
expressions:

@ &% al in 5..10
al in‘a .. z' && ebx
bool Var && !eax

HLA usesshort circuit evaluation when compiling the “&&” operator. If the left-most operand evaluates
false, then the code that HLA generates does not bother evaluating the second operand (since the whole ex
sion must be false at that point). Therefore, in the last expression, the code will not check EAX against zer:
bool Var contains false.

Note that an expression like “eax < 0 && ebx <> eax” is itself a legal boolean expression and, therefore, m
appear as the left or right operand of the “&&” operator. Therefore, expressions like the following are perfect
legal:

eax <0 && ebx<>eax && lecx

The “&&” operator is left associative, so the code that HLA generates evaluates the expression above in a left
right fashion. If EAX is less than zero, the CPU will not test either of the remaining expressions. Likewise,
EAX is not less than zero but EBX is equal to EAX, this code will not evaluate the third expression since tl
whole expression is false regardless of ECX’s value.

HLA uses the “||” operator to denote disjunction (logical OR) in a run-time boolean expression. Like th
“&&”" operator, this operator expects two legal run-time boolean expressions as operands. This operator ev:
ates true if either (or both) operands evaluate true. Like the “&&” operator, the disjunction operator uses shc
circuit evaluation. If the left operand evaluates true, then the code that HLA generates doesn’t bother to test
value of the second operand. Instead, the code will transfer to the location that handles the situation when
boolean expression evaluates true. Examples of legal expressions using the “||” operator:

@ || al =10
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al in‘*a ..’z || ebx
' bool Var || eax

As for the “&&” operator, the disjunction operator is left associative so multiple instances of the “||” operatc
may appear within the same expression. Should this be the case, the code that HLA generates will evaluat:
expressions from left to right, e.g.,

eax<0 || ebx<>eax || 'ecx

The code above executes if either EAX is less than zero, EBX does not equal EAX, or ECX is zero. Note the
the first comparison is true, the code doesn't bother testing the other conditions. Likewise, if the first comparis
is false and the second is true, the code doesn’t bother checking to see if ECX is zero. The check for ECX e
to zero only occurs if the first two comparisons are false.

If both the conjunction and disjunction operators appear in the same expression then the “&&” operator tal
precedence over the “||” operator. Consider the following expression:
eax <0 || ebx <> eax && lecx
The machine code HLA generates evaluates this as
eax < 0 || (ebx <> eax && 'ecx)

If EAX is less than zero, then the code HLA generates does not bother to check the remainder of the expres:
the entire expression evaluates true. However, if EAX is not less than zero, then both of the following conditic
must evaluate true in order for the overall expression to evaluate true.

HLA allows you to use parentheses to surround sub-expressions involving “&&” and “||” if you need tc
adjust the precedence of the operators. Consider the following expression:
(eax <0 || ebx <> eax) && 'ecx
For this expression to evaluate true, ECX must contain zero and either EAX must be less than zero or EBX n
not equal EAX. Contrast this to the result the expression produces without the parentheses.

HLA uses the “!” operator to denote logical negation. However, the “I” operator may only prefix a register c
boolean variable; you may not use it as part of a larger expression (e.g., “leax < 0”). To achieve logical nega
of an existing boolean expression you must surround that expression with parentheses and prefix the parentt
with the “!” operator, e.g.,

I'( eax < 0)

This expression evaluates true if EAX is not less than zero.

The logical not operator is primarily useful for surrounding complex expressions involving the conjunctiol
and disjunction operators. While it is occasionally useful for short expressions like the one above, it's usue
easier (and more readable) to simply state the logic directly rather than convolute it with the logical not opera

3.2.6.2: Converting C/C++ Boolean Expressions to HLA Boolean Expressions

Although, superficially, C/C++ boolean expressions that appear within control structures look very similar
those appearing in HLA high-level structured control statements, there are some fundamental differences
will create some conversion problems. Fortunately, most boolean expressions appearing in C/C++ control st
tures are relatively simple and almost translate directly into an equivalent HLA expression. Nevertheless, a la
percentage of expressions will take a bit of work to properly convert to a form usable by HLA.
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Although HLA provides boolean expressions involving relation and logical (and/or/not) operators, don’t ge
the impression that HLA supports generic boolean expressions as C/C++ does. For example, an expressior
“(xty) > 10 || a*b < c” is perfectly legal in C/C++, but HLA doesn't allow an expression like this. You might
wonder why HLA allows some operators but not others. There is a good reason why HLA supports only a lii
ited number of operators: HLA supports all the operations that don’t require the use of any temporary values (i
registers). HLA does not allow any code in an expression that would require the use of a register to hold a ti
porary value; i.e., HLA will not modify any register values behind the assembly programmer’s back. Thi
severely limits what HLA can do since subexpressions like “(x+y)” have to be computed in a temporary regist
(at least, on the 80x86). The previous section presented most of the operators that are legal in an HLA boo
expression. Unfortunately, of course, C/C++ does allow fairly complex arithmetic/boolean expressions within
structured control statement. This section provides some guidelines you can use to convert complex C/(
arithmetic/boolean expressions to HLA.

The first thing to note is that HLA only allows operands that are legatrp mstruction around one of the
relational operators. Specifically, HLA only allows the operands in Table 3-9 around a relational operator.

Table 3-9:  Legal Operands to a Relational Operator in an HLA Expression

Left Relational Right
Operand Operator Operand
reg < reg
<=
reg _ mem
reg == const
<>
mem I= reg
mem > const
>=

If you need to convert a boolean expression like “(x+y) > 10” from C/C++ into HLA, the most common
approach is to compute the sub-expression “(x+y)” and leave the result in a register, then you can compare
register against the value 10, e.g.,

mov( X, eax );
add( y, eax );
if( eax > 10 ) then

endi f;

Unfortunately, the syntax of various high level control structures in HLA don't allow you to place the statemen
that compute the result before the control structure; we’ll take a look at these problems in the sections that
low.

3.2.6.3; The IF Statement

The HLA IF statement uses the syntax shown in Table 3-2.
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Figure 3-2: HLA IF Statement Syntax
i f( expression ) then

sequence

of one or

nore statenents

The elseif clause is optional. Zero or more é&lsei
clauses may appear in an if statement. If more
than one elseif clause appears, all the elseif
clauses must appear before the else clause
sequence (or before the endif if there is no else clause).
of one or

nore statenents

sequence . .
of one or The else clause is optional. At most one

else clause may appear within an if stateimen
and it must be the last clause before the
endif.

nore statenents

endi f ;

The expressions appearing inignstatement must take one of the forms from the previous sections. If the
boolean expression is true, the code aften thed executes, otherwise control transfers to the méxei f or
el se clause in the statement.

Since theel sei f andel se clauses are optional, an statement could take the form of a single. t hen
clause, followed by a sequence of statements, and a ctoging clause. The following is such a statement:

if( eax = 0 ) then
stdout.put( “error: NULL value”, nl );

endi f;

If, during program execution, the expression evaluates true, then the code between tel theendi f
executes. If the expression evaluates false, then the program skips over the code betweermtitethesndi f .

Another common form of thief statement has a singiese clause. The following is an example of ian
statement with an optional se clause:

if( eax = 0 ) then

stdout.put( “error: NULL pointer encountered”, nl );
el se

stdout.put( “Pointer is valid’, nl );

endi f;
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If the expression evaluates true, the code betweenhire and theel se executes; otherwise the code
between thel se and theendi f clauses executes.

You can create sophisticated decision-making logic by incorporatirg ¢hef clause into anf statement.
For example, if the CH register contains a character value, you can select from a menu of items using code
the following:

if( ch=*a ) then

stdout.put( “You selected the “a nmenu iteni, nl );
elseif( ch ='b" ) then

stdout. put( “You selected the ‘b’ nmenu iteni, nl );
elseif( ch = ‘¢’ ) then

stdout. put( “You selected the ‘¢’ nmenu iteni, nl );
el se

stdout.put( “Error: illegal nmenu itemselection”, nl );

endi f;

Although this simple example doesn’t demonstrate it, HLA does not requéiesarclause at the end of a
sequence ofl sei f clauses. However, when making multi-way decisions, it's always a good idea to provide a
el se clause just in case an error arises. Even if you think it's impossible ferdbelause to execute, just keep
in mind that future modifications to the code could void this assertion, so it's a good idea to have error report
statements in your code.

The C/C++i f statement is similar, but certainly not identical to, the HliAstatement. First of all, the C/
C++ if statement is based on an older language design that allows only a single statement fafteelise.
That is, C/C++ supports the following syntaxes forithkel se statement:

i f( bool ean_expressi on)
<< single statenment >>;

i f( bool ean_expression )
<< single statenment >>;
el se
<< single statenment >>;

If you need to attach more than a single statement to a G/Cefel se, you have to use a compound state-
ment. A compound statement consists of a sequence of zero or more statements surrounded by braces.
means that there are six possible forms of thetatement you will find in a typical C/C++ program, as the fol-
lowing syntactical examples demonstrate:

1)
i f( bool ean_expression)
<< single statenent >>;

2)
i f( bool ean_expression)
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<< zero or nore statenents >>

3)
i f( bool ean_expression )
<< single statenment >>;
el se
<< single statenment >>;

4)
i f( bool ean_expression )

{
}

el se
<< single statenment >>;

<< zero or nore statenents >>

5)
i f( bool ean_expression )
<< single statenment >>;
el se

{
}

<< zero or nore statenents >>

6)
i f( bool ean_expression )

{
}
el se

{
}

<< zero or nore statenents >>

<< zero or nore statenents >>

To convert either of the first two forms to HLA is relatively easy. Simply convert the boolean expression t
HLA form (including placing any necessary arithmetic computations befoie tsiatement), convert the state-
ment or statements attached toithdo their HLA equivalents, and then placeemidi f after the last statement
attached to thef . Here are a couple of examples that demonstrate this conversion for the first two cases:

/[l if( a>0)
/1 ++a;

if(a>0) then
inc( a);
endi f;
[] if( (x*4) >=y && z < -5)
/1 {
/1 X = X - V;

/1 ++z;
I}
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mov( X, eax );
shl ( 2, eax ); [/l x*4
if( eax >>y & z < -5 ) then

mov( y, eax );
sub( eax, X );
inc( eax );

endi f;

Converting one of the other /el se forms from C/C++ to HLA is done in a similar fashion except, of
course, you also have to include thee section in the HLA translation. Here’s an example that demonstrates
this:

/1 if( a< 256)

/1 {

/1 ++a;
/1 --b;
/1 }

/1l else

/1 {

/1 --a;
/1 ++b;

/1 }
if( a <256 ) then

inc( a);
dec( b );

el se

dec( a );
inc( b);

endi f;

The C/C++ language does not directly supportiasei f clause as HLA does, however, C/C++ programs
often contain “else if’ chains that you may convert to an HLAei f clause. The following example demon-
strates this conversion:

it x >=(y | 2))

/1 ++X;

/1 else if( x >=10)
/1 --X;

/'l else

[

1 +ty;

/1 --Z;

I}

mov( y, eax );
or( z, eax );
if( x > eax ) then
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inc( x );

elseif( x >= 10 ) then
dec( x );

el se

incCy);
dec( z

endi f;

Sometimes a C/C++ else-if chain can create some conversion problems. For example, suppose that the |
ean expression in the “else if” of this example was “x >= (y & z)” rather than an expression that is trivially cor
vertible to HLA. Unfortunately, you cannot place the computation of the temporary results immediately befo
theel sei f in the HLA code (since that section of code executes whertause evaluates true). You could
place the computation before thieand leave the value in an untouched register, but this scheme has a couple
disadvantages - first, you always compute the result even when it's not necessary (e.g., iwhexptiession
evaluates true), second, it consumes a register which is not good considering how few registers there are or
80x86. A better solution is to use an HLA nestedather than aal sei f, e.g.,

it x >=(y | z))

/1 ++X;

/1 else if( x >=(y & z) )
/1 --X;

/1 else

I {

I +ty;

/1 --Z;

I}

mov( y, eax );
or( z, eax );
if( x >= eax ) then
inc( x);
el se
mov( y, eax );
and( z, eax );
if( x >= eax ) then
dec( x );

el se

inc(y);
dec( z );

endi f;

endi f;
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3.2.6.4: The SWITCH/CASE Statement

The HLA programming language doesn’t directly provide a multi-way decision statement (commonly know
as aswitch or case statement). However, the HLA Standard Library providesi ach / case / default /
endcase macro that provides this high level control statement in HLA. If you includéltinbf header file
(which stdlib.nhf automatically includes for you), then you can usestlia ch statement exactly as though it
were a part of the HLA language.

The HLA Standard Librargwi t ch statement has the following syntax:

Figure 3-3: Syntax for the Switch..case..default..endswitch Statement

switch( regs, ) |_— At least one CASE must be present.

—

case( constant_|ist )

<< statements > Zero or more statements assodate
S S with the CASE constants.

case( constant_list ) Optional set of zero or more CASE
— sections to handle additional cases.

P

<< statenents >>

def aul t
T~ . .
Optional DEFAULT section spec-
SS9 SUEn G e S \ ifies statements to execute if none
endswi t ch: of the CASE constants match the

register's value.

Like most HLA high level language statements, there are several restrictionssentttie statement. First
of all, theswi t ch clause does not allow a general expression as the selection valusi ildteclause will only
allow a value in a 32-bit general purpose register. In general you should only use EAX, EBX, ECX, EDX, ES
and EDI because EBP and ESP are reserved for special purposes.

The second restriction is that the HIlsai t ch statement supports a maximum of 256 different case values.
Fewswi t ch statements use anywhere near this number, so this shouldn’t prove to be a problem. Note that e
case in Figure 3-3 allows a constant list. This could be a single unsigned integer value or a comma separated
of values, e.g.,

case( 10 )
-Or-
case( 5, 6, 8)

Each value in the list of constants counts as one case constant towards the maximum of 256 possible consi
So the secondase clause above contributes three constants towards the total maximum of 256 constants.

Another restriction on the HLAwi t ch statement is that the difference between the largest and smallest val:
ues in the case list must be 1,024. Therefore, you cannot désae(in the samewi t ch statement) with values
like 1, 10, 100, 1,000, and 10,000 since the difference between the smallest and largest values, 9999, exc
1,024.
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Thedef aul t section, if it appears insai t ch statement, must be the last section insthie ch statement. If
nodef aul t section is present and the value in the 32-bit register does not match oneaskthenstants, then
control transfers to the first statement followingdheswi t ch clause.

Here is a typical example ofsai t ch. . endswi t ch Statement:
switch( eax )
case( 1)

stdout.put( “Selection #1.” nl );
<< Code for case #1 >>

case( 2, 3)

stdout. put( “Selections (2) and (3):” nl );
<< code for cases 2 & 3 >>

case( 5,6,7,8,9)

stdout. put( “Selections (5)..(9)" nl );
<< code for cases 5..9 >

defaul t

stdout. put( “Selection outside range 1..9" nl );
<< default case code >>

endswi t ch;

Theswi t ch statement in a program lets your code choose one of several different code paths depending u;
the value of the case selection variable. Among other thingswithheh statement is ideal for processing user
input that selects a menu item and executes different code depending on the user’s selection.

The HLA swi t ch statement actually supports the semantics of the Pasgaktatement (as well as multi-
way selection statements found in various other languages). The semantics of a&ihtstatement are
slightly different. As it turns out, HLA'swi t ch macro provides an option for selecting either Pascal or C/C++
semantics. Thall.hhf header file defines a special compile-time boolean varighlecswi t ch, that controls
which form of theswi t ch statement HLA will use. If this compile-time variable contains false (the default), then
HLA uses Pascal semantics for #hwe t ch statement. If this compile-time variable contains true, then HLA uses
C/C++ semantics. You may set this compile-time variable to true or false with either of the following two stat
ments:

?hll.cswi tch
?hll.cswi tch

true; [/ Enable C/ C++ semantics for the switch statenent.
false; // Enable Pascal semantics for the switch statenent.

The difference between C/C++ and Pascal semantics has to do with what will happen when the statem:
within somecase block reach the end of that block (by hitting anottwfe or thedef aul t clause). When using
Pascal semantics, HLA automatically transfers control to the first statement followirgdde t ch clause
upon hitting a new case. In the previous example, if EAX had contained one, then the switch statement wa
execute the code sequence:

stdout.put( “Selection #1.” nl );
<< Code for case #1 >>
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Immediately after the execution of this code, control transfers to the first statement followingi et ch
(since the next statement following this fragment is the “case(2,3)” clause).

If you select C/C++ semantics by setting thé. cswi t ch compile-time variable to true, then control does
not automatically transfer to the bottom of thet ch statement; instead, control falls into the first statement of
the nextcase clause. In order to transfer control to the first statement followingnideni t ch at the end of a
case section, you must explicitly placebaeak statement in the code, e.g.,

?hll.cswitch :=true; [/ Enable C C++ semantics for the switch statenment.
switch( eax )

case( 1)

stdout.put( “Selection #1.” nl );
<< Code for case #1 >>
br eak;

case( 2, 3)

stdout. put( “Selections (2) and (3):” nl );
<< code for cases 2 & 3 >>
br eak;

case( 5,6,7,8,9)

stdout. put( “Selections (5)..(9)" nl );
<< code for cases 5..9 >
br eak;

def aul t

stdout. put ( “Sel ection outside range 1..9" nl );
<< default case code >>

endswi t ch;

Note that you can alternately switch between C/C++ and Pascal semantics throughout your code by set
thehl I . cswi t ch compile-time variable to true or false at various points throughout your code. However, as th
makes the code harder to read, it's generally not a good idea to do this on a frequent basis. You should pick
form or the other and attempt to stick with it as much as possible. Pascal semantics are actually a little bit n
(and safer) plus you get to continue usingdheak statement to break out of a loop containingua ch state-
ment. On the other hand, some C/Gitt ch statements need the ability to flow from one case to another, so if
you're translating such a statement from C/C++ to HLA, the C/&x+ch statement format is easier to deal
with. Of course, the purpose of this chapter is not to teach you how to convert a C/C++ Windows program
HLA, but rather to help you read and understand C/C++ documentation. In real life, if you have to convert a
C++swi t ch statement to assembly language you're probably better off explicitly creating a jump table and usir
an indirect jump implementation of thei t ch statement (seéhe Art of Assembly Language for details).
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3.2.6.5: The WHILE Loop

The HLAwhi | e statement uses the basic syntax shown in Figure 3-4.

Figure 3-4: HLA WHILE Statement Syntax

The expression in the WHILE
statement has the same
restrictions as the IF statement

whi | e( expression ) do

sequence

of one or ——— Loop Body
nore statenents

endwhi | e;

Thewhi | e statement evaluates the boolean expression. If it is false, control immediately transfers to the fi
statement following thendwhi | e clause. If the value of the expression is true, then the CPU executes the bod
of the loop. After the loop body executes, control transfers back to the top of the loop whare éhetatement
retests the loop control expression. This process repeats until the expression evaluates false.

The C/C++ statement uses a similar syntax and identical semantics. There are two principle differen
between the HLA while loop and the C/C++ variant: (1) HLA uses “while(expr) do ... endwhile;” whereas C
C++ uses “while(expriingle statement;”, as with the C/C++f statement, if you want to attach more than a
single statement to thehi | e you have to create a compound statement (using braces); (2) HLA's boolear
expressions are limited compared to C/C++ boolean expressions (see the discussion in the section on conve
boolean expressions from C/C++ to HLA and the section onftistatement for details).

One problem with converting C/C++ statements to HLA is the conversion of complex boolean expressior
Unlike ani f statement, we cannot simply compute portions of a boolean expression prior to the actual test in
whi | e statement, i.e., the following conversion doesn’t work:

[ while( (x+y) < z)

/1 {

/1 printf( “x=%\n", x );
/1 ++X;

1 y =y + X

/1 }

mov( X, eax ); /1 Note: this won’t work!
add( y, eax );
while( eax < z ) do
stdout.put( “x=", x, nl );
inc( x );
mov( X, eax );
add( eax, y );
endwhi | e;

The problem with this conversion, of course, is that the computation of “x+y” needed in the boolean expre
sion only occurs once, when the loop first executes, not on each iteration as is the case with the original C/(
code. The easiest way to solve this problem is to use thefblleer . . endf or loop and ar eaki f statement:
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[ while( (x+y) < z)

/1 {

/1 printf( “x=%\n", x );
/1 ++X;

1 y =y + X

/1 }

forever
mov( X, eax );
add( y, eax );

breaki f( eax < z );

stdout. put( “x=", x, nl );
inc( x );
mov( X, eax );
add( eax, y );

endf or;

3.2.6.6: The DO..WHILE Loop

The C/C++do. . whi | e loop is similar to thewni | e loop except it tests for loop termination at the bottom of
the loop rather than at the top of the loop (i.e., it executes the statements in the loop body at least once, regar
of the value of the boolean control expression the first time the program computes it). ik thimop, the
do. . whi | e loop repeats the execution of the loop body as long as the boolean expression evaluates true.
does not provide an exact equivalent ofdbie whi | e loop, but it does providerapeat . . until loop. The dif-
ference between these two loops is thab.a whi | e loop repeats as long as (while) the expression evaluates
true, therepeat . . unti | loop repeats until the expression evaluates true (that is, it repeats the loop as long as 1
expression evaluates false).

The HLArepeat..until statement uses the syntax shown in Figure 3-5.

Figure 3-5: HLA repeat..until Statement Syntax
r epeat
sequence
of one or ——— Loop Body

nore statenents

until ( expression );

The expression in the UNTIL
clause has the same
restrictions as the IF statement

To convert a C/C+ido. . whi | e statement to an HLAepeat . . until statement, you must adjust for the
semantics of the loop termination condition. Most of the time, the conversion is immediately obvious; in tho
few cases where you've got a complex boolean expression whose negation is not instantly obvious, you
always use the HLA “I(...)" (not) operator to negate the result of the boolean expression, e.g.,

/1 do
11 {
11 <<some code fragment>>
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/1 }while( (x < 10) && (y > 5));
r epeat
<<some code fragnents converted to HLA>>

until ( ! ((x<10) && (y>5)) ):

One advantage of th#. . whi | e loop over C/C++’s while loop is that statements appearing immediately
before thenhi | e clause (and after thin clause) will generally execute on each iteration of the loop. Therefore,
if you've got a complex boolean expression that tests for loop termination, you may place the computation
portions of that expression immediately before the HbA | clause, e.g.,

/1 do

11 {

11 printf( “x=%\n", x );
/1 ++X;

/1 y =y + X;

[l }while( (x+y) < z)

r epeat
stdout.put( “x=", x, nl );
inc( x );
mov( X, eax );
add( eax, y );

mov( X, eax );
add( y, eax );
until ( !(eax < z) );

The only time this will not work is if there iscant i nue (or an HLAcont i nuei f) statement in the loop. The
cont i nue statement directly transfers control to the loop termination test imthe clause. Sinceonti nue
statements in C/C++ appear so infrequently, the best solution is to replacattheue with aj np instruction
that transfers control the first statement that begins the execution of the termination test expression.

3.2.6.7: The C/C++ FOR Loop

The C/C++ statemembr statement is a specialized form of tike | e loop. It should come as no surprise,
then, that the conversion to HLA is very similar to that fonfie e loop conversion. The syntax for the C/C++
for loop is the following:

for( expressionl; expression2; expression3)
st at enent;

This C/C++ statement is complete equivalent to the following C/C++ sequence:

expressionl,
whi | e( expression2 )
{
st at enent;
expressi on3
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Although you can convert a C/C++or statement to an HLAhi | e loop, HLA provides dor statement that
is syntactically similar to the C/C++or statement. Therefore, it's generally easiest to convert such C/C++ state:
ments into HLAf or statements. The HLAor loop takes the following general form:

for( Initial _Stnt; Term nation_Expression, Post_ Body Statenent ) do
<< Loop Body >>

endf or;

The following gives a complete example:
for( mov( O, i ); i < 10; add(1, i )) do
stdout.put( “i=", i, nl );

endf or;

/1l The above, rewitten as a while | oop, becones:

mov( 0, i );
while( i < 10 ) do

stdout.put( “i=", i, nl );
add( 1, i );
endwhi | e;

There are a couple of important differences between the HLA for loop and the C/C++ for loop. First of all, ¢
course, the boolean loop control expression that HLA supports has the usual restrictions. If you've got a comy
boolean expression in a C/C++ loop, your best bet is to converditieop into a C/C++whi | e loop and then
convert thatwi | e loop into an HLAf or ever . . endf or loop as the section on thwi | e loop describes.

The other difference between the C/C++ and HLA for loops is the fact that C/C++ supports arbitrary arit|
metic expressions for the first and third operands whereas HLA supports a single HLA statement. 90% of the
C++ for loops you’ll encounter will simply assign a constant to a variable in the first expression and increme
(or decrement) that variable in the third expression. Such for loops are very easy to convert to HLA as the 1
lowing example demonstrates:

/1 for( i=0; i<10; ++i )

/1 {

/1 printf( “i=%\n", i );
/1 }

for( mov( O, i ); i<1Q; inc(i) ) do

stdout.put( “i=", i , nl );
endf or;

C/C++ allows a bizarre form of the for statement to create an infinite loop. The C/C++ convention for an ini
nite loop uses the following syntax:
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for(;;)
st at enent;

HLA does not allow this same syntax for itsr loop. Instead, HLA provides an explicit statement for creating
infinite loops: thée or ever . . endf or statement. Figure 3-6 shows the syntax forf thever statement.

Figure 3-6: HLA forever..endfor Loop Syntax

f or ever

sequence
of one or ——— Loop Bog/
nore statenments

endf or;

Althoughfor (;;) andforever. . endfor, by themselves, create infinite loops, the truth is that most of the
time a program that employs these statements also bseska breaki f, Orret ur n statement in order to exit
the loop somewhere in the middle of the loop. The next section discussesdkh@ndbr eaki f statements. A
little bit later we’ll look at C/C++'s et ur n statement.

3.2.6.8: Break and Continue

C/C++ supports two specialized forms of the goto statement that immediately exits, or repeats the execu
of, the loop containing these statements. Oiwak statement exits the loop that contains the statement; the
cont i nue statement transfers control to the loop control expression (or simply to the top of the loop in the ca
of the infinite loop). As you've seen earlier, theak statement also ends a case sequence in the C/C++ switch
statement.

HLA also provides thér eak andcont i nue statements that have the same semantics within a loop. There-
fore, you can trivially translate these two statements from C/C++ to HLA. HLA also prowidesi f and
cont i nuei f statements that will test a boolean expression and execuiesthkeor cont i nue only if the expres-
sion evaluates true. Although C/C++ doesn't provide a direct counterpart to these two HLA statements, yol
often see C/C++ statements like the following that you can immediately translate to ar &HkAf or con-
tinuei f statement:

if( C expression ) break;
if( C.expression ) continue;

3.2.6.9: The GOTO Statement

The C/C++got o statement translates directly into an 80x8p instruction. A C/C++got o statement typi-
cally takes the following form:

got o soneLabel ;
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soneLabel : // The | abel may appear before the goto statenent!

This usually translates to the following HLA code:

j mp sonelabel ;

sonelLabel :

The only difference, besides substitutjmg for got o, is the fact thagot o labels have their ownamespace
in C/C++. In HLA, however, statement labels share the same namespace as other local variables. Therefore
possible (though rare) that you'll get a “duplicate name” error if you use the same name in your HLA code tt
appears in the C/C++ program. If this happens, make a minor change to the statement label when translatin
code to HLA.

3.3: Function Calls, Parameters, and the Win32 Interface

This section begins the second major portion of this chapter and, in fact, represents the most important m
rial in this chapter from the perspective of an assembly language programmer: how C/C++ function calls tra
late into assembly language and how an HLA programmer would call a function written in C/C++. Thi
information represents the major point of this chapter since all Win32 API calls are calls to C code. Furthermc
most Windows documentation that explains the Win32 API explains it in terms of C/C++ function calls, in orde
to understand how one makes calls to the Win32 API from assembly language, you must understand how C/t
implements these function calls. Explaining that is the purpose of this section.

3.3.1: C Versus C++ Functions

There are some very important differences, both semantic and syntactical, between functions written in C
functions written in C++. The Win32 API uses the C calling and naming convention. Therefore, all the WinZ
API documentation also uses the C calling and naming convention. Therefore, that's what we will concentr
on in this chapter.

C++ functions do offer several advantages over C functions. Function overloading is a good example of s
a feature. However, function overloading (using the same function name for different functions and differentiz
ing the actual functions by their parameter lists) requires the use of a facility knoameasangling in order to
generate unique names that the linker can use. Unfortunately, there is no standard for name mangling an
C++ compilers, so every one of them does it differently. Therefore, you rarely see assembly code (or other |
guages for that matter) interfacing with C++ functions.

In order to allow mixed-language programming with C++ (that is, the use of multiple programming lan
guages on the same project), the C++ language defines a special “C” function syntax that allows you to tell
compiler to generate C linkage rather than C++. This is done with thexZ¢rn attribute:

extern “C

{
b

extern char* RetHW void );
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Please consult a C++ reference manual or your compiler's documentation for more details. Since the Win32,
doesn't use the C++ calling convention, we won't consider it any farther here.

Another useful C++ feature that this chapter will discuss, when appropriate, is pass by reference parame
(since HLA also supports this feature). However, the Win32 API doesn’'t use any C++ features, so when t
chapter gets around to discussing pass by reference parameters, it will mainly be for your own edification.

3.3.2:  The Intel 80x86 ABI (Application Binary Interface)

Several years ago, Intel designed what is known as the 80x86 Application Binary Interface, or ABI. The pt
pose of the ABI was to provide a standard that compiler designers to use to ensure interoperability between n
ules written in different languages. The ABI specifies what registers a function call should preserve (and wh
registers a function can modify without preserving), where functions return their results, alignment of da
objects in structures, and several other conventions. Since Microsoft's C/C++ compilers (the ones used to ¢
pile Windows) adhere to these conventions, you’ll want to be familiar with this ABI since the Win32 API uses i

3.3.2.1: Register Preservation and Scratch Registers in Win32 Calls

The Intel 80x86 ABI specifies that functions must preserve the values of certain registers across a funct
call. If the function needs to modify the value of any of those registers, it must save the register’s value ¢
restore it before returning to the caller. The registers that must be preserved across calls are EBX, ESI, EDI,
EBP. This means two things to an assembly language programmer calling an Win32 function: first of all, Wi
dows preserves the values of these registers across a Win32 API call, so you can place values in these regi
make an OS call, and be confident that they contain the same value upon return. The second implication h:
do with callback functions. A callback function is a function you write whose address you pass to Windows. At
various times Windows may choose to call that function directly. Such callback functions must obey the regis
preservation rules of the Intel 80x86 ABI. In particular, such callback functions must preserve the value of t
EBX, ESI, EDI, and EBP registers.

On the flip side, the Intel 80x86 ABI specifies that a function may freely modify the values of the EAX, EC)
and EDX registers without preserving them. This means that you can generally count on Win32 API functio
disturbing the values in these registers; as you'll see in a moment, most Win32 API functions return a funct
result in the EAX register, so it's almost always wiped out. However, most Win32 API functions wipe out th
values in ECX and EDX as well. If you need the values of any of these registers preserved across a Win32
call, you must save their values yourself.

3.3.2.2: The Stack Pointer (ESP)

The ESP register is a special case. Function calls to the Win32 API generally do not preserve ESP bec:
they remove any parameters from the stack that you push onto the stack prior to calling the API function. Hc
ever, you can generally assume that ESP is pointing at an appropriate top of stack upon return from the funct
In particular, any values you push onto the stack before pushing any APl parameters (e.g., register values
want to preserve) will still be sitting on the stack when the function returns. Functions that follow the Inte
80x86 ABI do not arbitrarily mess with the value in the ESP register.

All Win32 API functions assume that the stack is aligned on a double-word boundary (that is, ESP contain
value that is an even multiple of four). If you call a Win32 API function and ESP is not aligned at a double-wo
address, the Win32 API function will fail. By default, HLA automatically emits code at the beginning of eacl
procedure to ensure that ESP contains a value that is an even multiple of four bytes. However, many progr
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mers choose to disable this code (to make their programs slightly more efficient). If you do this, always me
sure that ESP contains a value whose L.O. two bits contain zeros (that is, an even multiple of four) before cal
any Win32 API functions.

3.3.2.3: The Direction Flag

All Win32 functions assume that the direction flag is clear when you call them. The Win32 programmin
convention is to set the direction flag when you need it set and then immediately clear it when you are done u:
it in that state. Therefore, in all code where you have not explicitly set the direction flag yourself, you c:
assume that the direction flag is clear. You code should adhere to this policy as well (and always make sure
direction flag is clear when you make a Win32 API call). You can also assume that the direction flag is cle
whenever Windows calls one of your callback routines.

3.3.2.4; Function Return Results

Table 3-10 lists the places that functions should return their result (depending on the size of the functi
return result). The Win32 API generally adheres to this convention. If a function returns more than eight byt
Win32 API functions generally require that you pass a pointer (i.e., the address of) some block of memory wh
the function will store the final result.

Table 3-10: 80x86 ABI Function Return Result Locations

SFQZZ?I]; :;ug;:g] Returned Here
1 al
2 ax
4 eax
8 edx:eax
other See Compiler Documentation

3.3.2.5: Data Alignment and Padding

The Intel 80x86 ABI generally expects objects to appear at addresses in memory that are an even multipl
their natural size up to four bytes in length (i.e., byte objects may appear at any address, word objects alw
appear at even addresses, and larger objects are aligned on double-word addresses). This is true for static ol
automatic variables (local variables within a function), and fields within structures. Although this convention
easily circumvented by setting compiler options, the Win32 API pretty much adheres to this convention throug
out.

If an object would normally start at an address that is not an even multipleraftiral size** (up to four
bytes), then the Microsoft C compiler will align that object at the next highest address that is an even multiple

14.The natural size of an object is the size of the object if it's a scalar, the size of an element if it's an arrage@fttiesi
largest field (up to four bytes) if it's a structure.
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the object’s native size. For data, the compiler usually fi#ldg) the empty bytes with zeros, though you should
never count on the values (or even presence) of padding bytes.

Parameters passed on the stack to a function are a special case. Parameters are always an even multi
four bytes (this is done to ensure that the stack remains double-word aligned in memory). If you pass a para
ter that is smaller than four bytes to some function, the Microsoft C compiler will pad it out to exactly four byte:
Likewise, if you pass a larger object that is not an even multiple of four bytes long, the compiler will pad tt
object with extra bytes so its length is an even multiple of four bytes long.

For information on padding within structures, please see the section etrthwe data type earlier in this
chapter.

3.3.3:  The C, Pascal, and Stdcall Calling Conventions

There are many different function calling conventions in use today. Of these different calling convention
three are of interest to us, the so-calleéPascal, andStdcall calling conventions. The C and Stdcall calling con-
ventions are of interest because they're the ones that Win32 API calls use. The Pascal calling convention i
interest because that’s the default calling convention that HLA uses.

The Pascal calling convention is probably the most efficient of the three and the easiest to understand. In
Pascal calling sequence, a compiler (or human programmer writing assembly code) pushes parameters or
stack as they are encountered in the parameter list when processing the parameters in a left-to-right fast
Another nice feature of the Pascal calling sequence is that the procedure/function is responsible for removing
parameters from the stack upon return from the procedure; so the caller doesn’t have to explicitly do this uj
return. As an example, consider the following HLA procedure prototype and invocation:

/1 Note: the “@ascal” attribute is optional, since HLA generally uses
/'l the pascal calling convention by default.

procedure proc( i:int32; j:int32; k:int32 ); @ascal; @xternal;

proc( 5, a, eax );

Whenever HLA encounters the high-level calbt@c appearing in this example, it emits the following “pure”
assembly code:

pushd( 5 );

push( a ); /1 Assunption: a is a 32-bit variable that is type conpatible with int32
push( eax );

call proc

Note that you have the choice of using HLA's high-level calling syntax or manually pushing the paramete
and calling the procedure directly. HLA allows either form; the high-level calling syntax is generally easier 1
read and understand and it’s less likely you'll make a mistake (that invariably hangs the program) when using
high level syntax. Some assembly programmers, however, prefer the low-level syntax since it doesn’t hide w
is going on.

The C calling convention does two things differently than the Pascal calling convention. First of all, C func
tions push their parameters in the opposite order than Pascal (e.g., from right to left). The second differenc
that C functions do not automatically pop their parameters from the stack upon return. The advantage of th
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calling convention is that it allows a variable number of parameters (e.g., fori Gt function). However, the
price for this extra convenience is reduced efficiency (since the caller has to execute extra instructions to rerr
the parameters from the stack).

Although Windows is mostly written in C, most of the Win32 API functions do not use the C calling conven
tion. In fact, only the API functions that support a variable number of parameterss(&.gnt f ) use the C call-
ing convention. If you need to make a call to one of these API functions (or you want to call some other functi
that uses the C calling convention), then you've got to ensure that you push the parameters on the stack ir
reverse order of their declaration and you've got to remove them from the stack when the function returns. E

/1 int cProc( int i, int j, int k);
/1

/1

/1 .

/1l cProc( a, 5, 2);

pushd( 2 ); /1l push | ast paranmeter first!
pushd( 5 );
push( a ); /lassunes a is a dword vari abl e.

call cProc
add( 12, esp ); // Renove three dword paraneters from stack upon return

HLA supports the C calling convention using t®eecl procedure attribute, e.g.,
procedure cProc( i:int32; j:int32; k:int32 ); @decl; @xternal;

HLA's high-level procedure call syntax will automatically push the actual parameters on the stack in the app
priate order (i.e., in reverse). However, you are still responsible for removing the parameter data from the st
upon returning from the procedure call:

cProc( a, 5, 2); [/ Pushes 2, then 5 then a onto the stack
add( 12, esp ); /1 Renove paraneter data fromthe stack

Don't forget that all procedure parameters are an even multiple of four bytes long. Therefore, when remc
ing parameter data from the stack the value you add to ESP must reflect the fact that the Intel ABI rounds par
eter sizes up to the next multiple of four bytes.

The last parameter passing mechanism of immediate interest to usSidctile (standard call) parameter
passing mechanism. The Stdcall scheme is a combination of the C and Pascal calling sequences. Like the C
ing sequence, the Stdcall scheme pushes the parameters on the stack in the opposite order of their declar
Like the Pascal calling sequence, the procedure automatically removes the parameters from the stack be
returning. Therefore, the caller does not have to remove the parameter data from the stack (thus improving
ciency by a small amount). Most of the Win32 API functions use the Stdcall calling convention. In HLA, you
can use thest dcal | procedure attribute to specify the Stdcall calling convention, e.g.,

procedure stdProc( i:int32; j:int32; k:int32 ); @tdcall; @xter-
nal ;

HLA's high level procedure call syntax will automatically push the parameters on the stack in the proper (i.
reverse) order:

stdProc( a, 5, 2);
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Of course, you can also manually call a Stdcall procedure yourself. Be sure to push the parameters in
reverse order!

pushd( 2 );
pushd( 5 );
push( a );
call stdProc

Notice that this code does not remove any parameters from the stack. That is the function’s job.

Some older HLA code (written before the @stdcall facility was added to the language) simulates the Stdc
calling convention by reversing the parameters in the procedure declaration (indeed, some of the HLA stanc
library code takes this one step farther and uses macros to swap the parameters prior to making calls to these
cedures). Such techniques are obsolete and you shouldn’t employ them; however, since there is some code
around that does this, you should be aware of why it does this.

3.3.4: Win32 Parameter Types

Almost all Win32 parameters are exactly four bytes long. This is true even if the formal parameter is o
byte (e.g., &har object), two bytes (ahort int), or some other type that is smaller than four bytes. This is
done to satisfy the Intel 80x86 ABI and to keep the stack pointer aligned on a four-byte boundary. Since
parameters are exactly four bytes long, a good question to ask is “how do you pass smaller objects, or obj
whose size is not an even multiple of four bytes, to a Win32 API function?” This section will briefly discuss th
issue.

Whenever you pass a byte parameter to some function, you must pad that byte out to four bytes by pushin
extra three bytes onto the stack. Note that the procedure or function you call cannot assume that those bytes
tain valid data (e.g., the procedure/function cannot assume those three bytes all contain zeros). It is perfectly
sonable to push garbage bytes for the upper three bytes of the parameter. HLA will automatically generate ¢
that pushes a byte-sized actual parameter onto the stack as a four-byte object. Most of the time, this code is
tively efficient. Sometimes, however, HLA may generate slightly less efficient code in the interest of safety. F
example, if you pass the BH register as a byte-sized parameter (a reasonable thing to do), there is no way
HLA can push BH onto the stack as a double word with a single instruction. Therefore, HLA will emit code lik
the following:

sub( 4, esp ); /1 make room for the paraneter
nov( bh, [esp] ); // Save BHin the L.O byte of the object on top of stack

Notice that the upper three bytes of this double-word on the stack will contain garbage. This example, in par
ular, demonstrates why you can’'t assume the upper three bytes of the double word pushed on the stack co
zeros. In this particular case, they contain whatever happened to be in those three bytes prior to the executic
these two instructions.

Passing the AL, BL, CL, or DL register is fairly efficient on the 80x86. The CPU provides a single byte
instruction that will push each of these eight-bite values onto the screen (by passing the entire 32-bit register
contains these registers:

push( eax ); [/ Passes al
push( ebx ); [/ Passes bl.
push( ecx ); [/ Passes cl
push( edx ); [// Passes d
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Passing byte-sized memory objects is a bit more problematic. Your average assembly language program
would probably write code like the following:

push( (type dword byteVar) ); [/ Pushes byteVar plus three follow ng bytes
call funcWthByt eParam

HLA, because it observes safety at the expense of efficiency, will not generate this code. The problem is
there is diny chance that this will cause the system to fail. This situation could odsyireifar is located in
memory within the last three bytes of a page of memory (4096 bytes) and the next page in memory is not re
able. That would raise a memory access violation. Quite frankly, the likelihood of this ever occurring is ¢
remote that your average programmer would ignore the possibility of it ever happening. However, compile
cannot be so cavalier. Even if the chance that this problem will occur is remote, a compiler must generate ¢
code (that will never break). Therefore, HLA actually generates code like the following:

push( eax ); /1 Make room for paraneter on stack.

push( eax ); /'l Preserve EAX s val ue

mov( bytevar, al );

nov( al, [esp+4] ); /1l Save byteVar’s value into paraneter |ocation
pop( eax ); /'l Restore EAX s val ue.

call funcWthByteParam // Call the function.

As you can see, the code that HLA generates to pass a byte-sized object as a parameter can be pretty ugly
that this is only true when passing variables).

Part of the problem with generating code for less-than-dword-sized parameters is that HLA promises to ne

mess with register values when passing paranjréielrﬁ_A provides a special procedure attrib@ese, that lets
you tell HLA that it is okay to modify the value of a 32-bit register if doing so will allow HLA to generate better
code. For example, suppdaecW t hByt ePar amhad the following external declaration:

procedure funcWthByteParan( b:byte ); @se EAX; @xternal;

With this declaration, HLA can generate better code when calling the function since it can assume that it's ol
to wipe out the value in EAX:

/1 funcWthByteParan( byteVar );

nov( byteVar, eax );
push( eax );
call funcWthByt eParam

Because the Intel ABI specifies that EAX (and ECX/EDX) are scratch registers and any function followin
the Intel ABI is free to modify their values, and because the Win32 functions follow the Intel ABI, and becaus
most Win32 API functions return a function return result in EAX (thereby guaranteeing that they wipe out EAX
value on any Win32 API call), you might wonder why you (or the HLA Standard Library) shouldn’t just always
specify “@use EAX;” on every Win32 function declaration. Well, there is a slight problem with doing this. Con
sider the following function declaration and invocation:

15.Indeed, the only time HLA messes with any register value behind your back is when invoking a class method. However,
HLA well-documents that fact that class method and procedure calls may wipe out the values in ESI and EDI.
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procedure func( b:char; c:char; d:boolean ); @se eax; @xternal;

func( charVvar, al, bool var );

Here’s code similar to what HLA would generate for this function call:

nmov( charVar, al );
push( eax );

push( eax );

nmov( bool Var, al );
push( eax );

call func;

Do you see the problem? Passing the first parameter (when usi@gdbel calling convention) wipes out the
value this code passes as the second parameter in this function invocation. Had we spe@fied|thar
@tdcal | calling convention, then passing the third parameter would have done the dirty deed. For safety re
sons, the HLA Standard Library that declares all the Win32 API functions does not atta@séhgrocedure
attribute to each procedure declaration. Therefore, certain calls to Win32 API routines (specifically, those tl
pass memory variables that are less than four bytes long as parameters) will generate exceedingly mediocre

If having smaller prograni§ is one of your primary goals for writing Windows applications in assembly lan-
guage, you may want to code calls containing such parameters manually.

If a parameter object is larger than four bytes, HLA will automatically round the size of that object up to th
next multiple of four bytes in the parameter declaration. For exanyaleso objects only require ten bytes to
represent, but when you pass one as a parameter, HLA sets aside 12 bytes in the stack frame. When HLA g
ates the code to passeal 80 object to a procedure, it generates the same code it would use to pass two douk
word variables and a word variable; in other words, the code needed to pass the last two bytes could get ugly
the same reasons we've just covered). However, since there aren’t any Win32 API functions that exp&ct a
parameter, this shouldn’t be an issue.

Table lists the typical C/C++ data types, their HLA equivalents, and how much space they consume when \
pass them as parameters to a Win32 API function.

Table 3-11: Space Consumed by Various C Types When Passed as Parameters

C Type Corresponding HLA Types Space Consumed on Stack Padlding
char char, byte, int8 four bytes three bytes
short word, int16 four bytes two byteg
int dword, int32 four bytes none
long dword, int32 four bytes none
long long gword, int64 eight bytes none

16.In the big picture, this extra code is not going to affect the running time of your code by a significant factor. Win32 API
functions are sufficiently slow to begin with that the few extra clock cycles consumed by the “safe” code is insignificant.
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C Type Corresponding HLA Types Space Consumed on Stack Padlding
unsigned char char, byte, uns8 four bytes none
unsigned short word, uns16 four bytes none
unsigned dword, uns32 four bytes none
unsigned int dword, uns32 four bytes none
unsigned long dword, uns32 four bytes none
unsigned long long gword, uns64 eight bytes none
float real32 four bytes none
double real64 eight bytes none
long double real64 (on some compilers) eight bytes none

real80 (on other compilers) twelve bytes two bytes

a.Some compilers have an option that lets you specify the use of unsigned char as the default. In this case, the
corresponding HLA type is uns8.

3.3.5:  Pass by Value Versus Pass by Reference

The C programming language only supppéss by value parameters. To simulate pass by reference param-
eters, C requires that you explicitly take the address of the object you wish to pass and then pass this adc
through a pass by value parameter that is some pointer type. The following code demonstrates how this is d

/* C code that passes sone paraneter by reference via pointers */

int someFunc( int *ptr )

{
}

*ptr = 0;

/* Invocation of this function, assume i is an int */

someFunc( & );

This function passes the address aifs the value of thet r parameter. WithisoneFunc, the function derefer-
ences this pointer and stores a zero at the address passed in through the pointer variable (since, in this exa
we've passed in the address othis code stores a zero into theariable).

HLA, like the C++ language, directly supports both pass by value and pass by reference pafangsers
when coding a prototype for some Win32 API function that has a pointer parameter, you've got the choice
specifying a pointer type as a value parameter or the pointer’'s base type as a reference parameter in the HLA

17.Actually, HLA supports several different parameter passing mechanisms. However, pass by value and pass by reference are
the only ones that are of interest when calling Win32 API functions, so we’ll discuss only those here. See the HLA refer-
ence manual for more details on the more advanced parameter passing mechanisms.
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laration. ThesoneFunc C function in the current example could be encoded with any of the following to HLA
declarations:

/1 A “typel ess” variable declaration (since pointers are always 32-bit val ues)
/1l that passes the paraneter by val ue:

procedure someFunc( ptr:dword );
begi n someFunc;

mov( ptr, eax );
mov( 0, (type dword [eax]) );

end someFunc

/1 A typed version passing a pointer to an int32 object as a val ue paraneter:

type
plnt32 :pointer to int32;

procedure someFunc( ptr:plnt32 );
begi n someFunc;

mov( ptr, eax );
mov( 0, (type dword [eax]) );

end someFunc

/1 A version using pass by reference paraneters

procedure someFunc( var ptr:int32 );
begi n someFunc;

mov( ptr, eax );
mov( 0, (type dword [eax]) );

end someFunc

Note that the function’s body is exactly the same in all three cases. The function has to grab the address pe
on the stack and store a zero at that memory address (just as the C code does). If you manuadiyueall

(that is, if you use low-level assembly syntax rather than HLA's high-level procedure calling syntax), then tt
code you write to call any of these three versions is also identical. Itis

/1 sonmeFunc( i );

lea( eax, i ); /1 Take the address of i, could use “pushd( & );” if i is static.
push( eax ); /1 This code assumes that it is okay to wi pe out EAX s val ue.
call soneFunc; /1 We're al so assum ng @ascal or @tdcall convention here.
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The difference between these procedure declarations is only evident when you use HLA's high level prox
dure calling syntax. When the parameter is a double word or pointer value, the caller must explicitly write t
code to calculate the address of the actual parameter and pass this computed address as the parameter’s ve
the following example demonstrates:

/1 procedure sonmeFunc( ptr:dword );

/1 -or-

/'l procedure sonmeFunc( ptr:plnt32 );

/1

/1 call soneFunc, passing the address of “i”

lea( eax, i );
sonmeFunc( eax );

When calling a procedure that has a pass by reference parameter, all you need do is pass the variable i
HLA will automatically generate the code that takes the address of the variable:

/] procedure sonmeFunc( var ptr:int32);

someFunc( i );

Ifiisastatic, storage, Orreadonly variable without any indexing applied to it, then HLA generates the fol-
lowing code for this statement:

push( & );
call sonmeFunc

However, if the actual parameter (i in this case) is an indexed static object, or is a local variable, then HLA w
have to generate code like the following:

push( eax );
push( eax );

lea( eax, i );
mov( eax, [esp+4] );
pop( eax );

cal |l soneFunc

This happens because HLA promises not to mess with register values when passing parameters. Of course
can improve the quality of the code that HLA generates by using the “@use” procedure attribute, remember
the caveats given earlier:

/1 procedure sonmeFunc( var i:int32 ); @se EAX

someFunc( i ); // Assune i is a local (automatic) variable
/1 is equivalent to

lea( eax, i );

push( eax );
cal |l soneFunc
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HLA's pass by reference parameter passing mechanism requires that you specify a memory address a
actual reference parameter. So what happens if you run into a situation when the address you want to pass i
register and you've specified a pass by reference parameter? If you try to call the function with code like the
lowing HLA will complain that you've not specified a valid memory address:

sonmeFunc( esi );

The trick is to give HLA what it wants: a memory address. This is easily achieved by specifying the followin
function call tosomeFunc:

soneFunc( [esi] );

This generates the following assembly code:

push( esi );
cal |l soneFunc;

HLA usually requires the type of the actual parameter (the parameter you pass in a proceduexagzili) to
match the type of the formal parameter (the parameter appearing in the declaration of the procedure). You ca
pass the address othar variable as a parameter when the original function calls fobleean variable (even
though both parameter types are one byte in length). There are a couple of exceptions worth noting. You I
pass ayt e variable as an actual parameter whenever the formal parameter is one byte in length. Similarly, HL
will allow an actual parameter whose typewdsd if the formal parameter’s size is two bytes and HLA will allow
an actuabtiwor d parameter whenever the formal parameter is four bytes. Also, if the formal parametereis a
wor d, ordword type, then HLA will allow you to pass an actual parameter that is one byte long, two bytes long
or four bytes long, respectively. HLA will also allow an anonymous memory object (e.g., “[eax]”) as an actu:
parameter for any pass by reference parameter; such a parameter will simply pass the value of the specified r
ter as the address for the reference parameter.

One feature that HLA supports as a convenience (especially for Win32 API function calls) is that if you pa
a pointer variable as an actual pass by reference parameter, where the formal type of the reference parame
the base type of the pointer, HLA will go ahead and pass the value of the pointer rather than returning an erroi
passing the address of the pointer variable), e.g., the following demonstrates this:

type
pi :pointer to int32;

procedure hasRef Parnm( var i:int32 );
begi n hasRef Par m

end hasRef Par m
static

nylnt :int32;
plnt :pi;
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hasRef Parm{ nylnt ); // Conmputes and passes address of nylnt.

hasRef Parn{ plnt ); /'l Passes the value of the plnt pointer variable

The choice of whether to pass a parameter as a pointer by value or as a variable by reference is mainly a
ter of convenience. If you are usually passing an actual parameter that is a memory variable whose type mat
the formal parameter’s type, then pass by reference is probably the way to go. However, if you're doing poin
arithmetic or constantly passing the address of objects whose type doesn’t exactly match the formal parame
type (and you're sure you know what you're doing when you do this), then passing a pointer by value is proba
going to be more convenient.

Many Win32 API functions accept the address of some buffer as a parameter. Often, the prototype for
function specifies the pointer type as “void *”. This means that the caller is supplying the address of a block
memory and the abstract type attached to that block of memory is irrelevant to the compiler. HLA also provic
a special form of the pass by reference parameter passing mechanism that suspends type checking on the .
parameters you pass to the procedure. Consider the following HLA procedure prototype:

procedure untypedVar Parnm( var parmvar ); @xternal;

Specifying “var” as the parameter’s type tells HLA that this is an untyped pass by reference parameter. 1
caller can supply any memory address as the parameter and HLA will pass that address on to the function.
normal pass by reference parameters, the actual parameter you supply to this function must be a memory |
tion, you cannot supply a constant or a register as an operand (though you can spegjfy dgegparameter

and HLA will pass the value of the specified 32-bit general purpose register as the memory address). This
cial pass by reference form is especially useful when passing Win32 API functions the address of some bu
where it can place data that Windows returns to the caller. There is, however, one big “gotcha” associated \
untyped pass by reference parameters: HLA always passes the address of the variable you pass the function.
is true even if the variable you pass as a parameter is a pointer variable. The following is syntactically accept:
to HLA, but probably doesn’t do what the programmer expects:

procedure hasUntypedParn{ var i:var );
begi n hasUnt ypedPar m

end hasUnt ypedParm

static
nylnt :int32;
plnt :pi;

hasUnt ypedParn( nylnt ); // Conputes and passes address of nylnt.

hasUnt ypedParn{ plnt ); /1 Conputes and passes address of plnt

In particular, note that this code does not pass the value of the pointer variable in the second call. Instead, it t
the address of the pointer variable and passes that address onhdeUhgpedPar mprocedure. So take care
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when choosing to use untyped pass by reference parameters; their behavior is slightly different than regular
by reference parameters as this example shows.

There is one important issue that HLA programmers often fariek:string variables are pointerst Most
Win32 API functions that return data via a pass by reference parameter return character (string) data. It's ter
ing to be lazy and just declare all pass by reference parameters as untyped parameters. However, this can ¢
havoc when calling certain Win32 API functions that return string data. Consider the following Win32 API pra
cedure prototype:

static
Get Ful | Pat hName: procedure
(

| pFi | eNane :ostring;
nBuf f er Length : dword;
var | pBuffer ©ovar;
var | pFil ePart ©ovar
);
@tdcall; @eturns( "eax" ); @xternal ( "__inp__CetFull Pat hNameA@=e6" );

This function stores a zero-terminated string into the block of memory pointed Bpday f er . It might be
tempting to call this procedure as follows:

static
s :string;
fp :pointer to char;

strall oc( 256 );
mov( eax, S );

Cet Ful | Pat hName( “nyfile.data”, 256, s, fp );
mov( s, ebx ); /1l CGetFull Pat hName returns the actual
mov( eax, (type str.strRec [ebx]).length ); /1l string length in EAX

The objective of this code is (obviously) to have the catletarul | Pat hNanme place the full path name of the
myfile.data file into the string variable. Unfortunately, this code does not work as advertised. The problem is
that the pBuf f er variable is an untyped reference parameter. As a result, the @alHo | Pat hNane takes the
address of whatever variable you pass it, even if that variable is a pointer variable. Since strings are four-k
pointers (that contain the address of the actual character data), this example code doesn't do what the a
probably intended. Rather than passing the address of the character string data buffer as you might expect
code passes the address of the four-byte pointer vasigdleet Ful | Pat hName as the buffer address. On return,
this function will have overwritten the pointer value (and probably the values of other variables appearing
memory immediately aftes). Notice how the original example of this function call appearing earlier in the
chapter handled this situation:

static
full Nane :string;
nanePtr :pointer to char;
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strall oc( 256 ); /1 Al'locate sufficient storage to hold the string data.
nov( eax, full Nane );

mov( full Nane, edx ); [/ Get the address of the data buffer into EDX
CGet Ful | Pat hName

(

“myfile.exe”, /'l File to get the full path for.

(type str.strRec [edx]).MaxStrLen, /1 Maxi mum string size

[ edx], /1l Pointer to buffer

nanmePt r /1 Address of base nane gets stored here
)
mov( full Nane, edx ); /1 Note: Wn32 calls don’t preserve EDX

mov( eax, (type str.strRec [edx]).length // Set the actual string length

WE'll return to this issue a little later in this chapter when we discuss the conversion of Win32 API function pr
totypes from C to HLA.

The C language always passes arrays by reference. Whenever the C language sees the name of a fur
without an index operator ( “[...]") attached to it, C substitutes the address of the first element of the array for tl
array. Similarly, if you specify some array as a formal parameter in a C function declaration, C assumes that

will actually be passing in a pointer to an element of that array&ype

Structures, on the other hand, C always passes by value (unless, of course, you explicitly take the address
struct object using the address-of operator and pass that pointersta the as your parameter value). Win32
API functions always pass pointers to structures (that is, they expect you to pass structures by reference re
than by value), so when you create a prototype for a Win32 API function call thatthasa as a parameter,
you'll always specify a pointer to the structure or pass it by reference in the HLA declaration.

3.4. Calling Win32 API Functions

The Windows operating system consists of several dynamic linked library (DLL) modules in memory. Ther
fore, when you call a Win32 API function, you're not actually calling that function directly. Indeed, unless you
declare your function in a special way, there may be two levels of indirection involved before you get to tl
actual Win32 kernel code within the DLL. This section will give you a quick primer on Win32 DLLs and how tc
design your Win32 API function prototypes in HLA to make them slightly more efficient.

The phrase “dynamic linked library” means that linkage to a library module is done at run-time. That is, su
plying the run-time address of the library function in question could, technically, be done after your progra
begins execution. The linking process normally involves patching the address fields of all the call instructic
that reference a given function in some library code being linked. However, at run-time (that is, after Windo.
has loaded your program into memory and begun its execution), it's impractical to attempt to locate every call
some function so that you can modify the address field to point at the new location of that function in memo
The solution to this problem is to provide a single object that has to be changed in memory to provide the li
age, put that object in a known location, and then update that single object whenever dynamically linking in 1
the function. By having a “single point of contact” the OS can easily change the address of that contact objec

There are two ways to add such a “single point of contact” to a machine code program. The first way is to |
a pointer that holds the address of the ultimate routine to call. The application code, when it wants to invoke

18.As noted earlier, C does not differentiate pointer or array access syntax. Both are identical to C, for the mostipart. Thi
how C gets away with passing all arrays as a pointer to their first element.
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Win32 API function (or any other function in some DLL) would simply issue an indirect call through this
pointer. The second way is to plac¢m instruction at a known location and modify thep instruction’s
address operand field to point at the first instruction of the desired function within the DLL. The indirect ce
mechanism is a little more efficient, but it requires encoding a special form of the call instruction whenever y:
call a function in the DLL (and many compilers will not generate this special form ohthenstruction by
default, if they provide the option to do it at all). The use of tpeinstruction mechanism is more compatible
with existing software development tools, but this scheme requires the execution of an extra instruction in or.
to transfer control to the actual function in the DLL (specifically, you have to execyteptlestruction after
“calling” the function). Windows, as it turns out, combines both of these mechanisms when providing an inte
face to the Win32 API functions. The API interface consists of an inglirpahstruction that transfers control

to some location specified by a double-word pointer. The linking code can use any formaof tl@r other
control transfer) instruction to transfer control to the indifegt instruction. Then the indire¢trp transfers
control to the actual function specified by the pointer variable. The operating system can dynamically change
target address of the function within the DLL by simply changing this pointer value in memory.

Of course, there is an efficiency drawback to this scheme. Not only must the code execute thai extra
instruction, but an indire¢tmp is typically slower than a dire¢trp. So Windows’ solution is the slowest of the
three forms: you pay the price for the exjtra instruction and the extra cost associated with the use of indirec-
tion. Fortunately, one of the advantages of assembly language is that you can easily circumvent this extra wr

Consider the following HLA procedure prototype to the Wias2:t Pr ocess function:

procedure ExitProcess( uExitCode:uns32 ); @tdcall; @xternal ( “_ExitProcess@” );

The_Exi t Process@ label is actually the label of an indirgeip instruction that will be linked in with any pro-
gram that call€xi t Process. In HLA form, the code at the address specified by teét Process@ label
looks something like the following (assuming labels like “_ExitProcess@4” were legal in HLA):

_ExitProcess@: jnp( _inp__ExitProcess@ );

The * _imp__ ExitProcess@4” symbol is the name of a double word pointer variable that will contain th
address of the actuati t Process function with the Win32 OS kernel, i.e.,

static
_inp__ExitProcess@ :dword; // Assuming “@ was actually legal within an HLA |ID.

Note that the library files (e.dernel32.lib) that you link your programs with contain definitions for both the
symbols_Exi t Process@ and_i np__Exi t Process@. The “standard” symbols (e.gExit Process@) refer
to the indirect np instruction. The symbols with the “_imp_" prefix refer to the double word pointer variable
that will ultimately hold the address of the actual kernel code. Therefore, you can circumvent the execution
the extrg np instruction by calling the kernel function indirectly through this pointer yourself, e.g.,

call ( _inmp__ExitProcess@ ); /1 Assuming “@ was actually legal within an HLA ID.

The major problem with this approach is that it doesn't allow the use of the HLA high level function call syntas
You would be forced to manually push any parameter(s) on the stack yourself when using this scheme. |
moment, you’'ll soon see how to circumvent this problem. Another minor issue is that HLA doesn’t allow th
“@” symbol in an identifier (as all the previous code fragments have noted). This, too, is easily corrected.
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HLA allows you to declare both external procedures and variables. We’ll use that fact to allow external lin
age to both the jmp instruction (that is effectively the Win32 API function’s entry point) and the pointer to th
variable. The following two declarations demonstrate how you can do this:

static
_inp__ExitProcess :dword; @xternal ( “_inmp__ ExitProcess@” );

procedure ExitProcess( uExitCode:uns32 ); @tdcall; @xternal ( “_ExitProcess@” );

HLA also allows the declaration of procedure variables. A procedure variable is a four-byte pointer to a giv
procedure. HLA procedure variables are perfect for Win32 API declarations because they allow you to L
HLA's high level syntax for procedure calls while making an indirect call through a pointer. Consider the follow
ing declaration:

static
Exi t Process :procedure( uExitCode:uns32 );
@tdcall; @xternal ( “_inp__ ExitProcess@” );

With this declaration, you can caiti t Process as follows:
Exi t Process( 0 );

Rather than calling the code beginning with the indiregtinstruction, this HLA high level procedure call does
an indirect call through the np__Exi t Process@ pointer. Since this is both convenient and efficient, this is the
scheme this book will generally employ for all Win32 API function calls.

3.5: Win32 API Functions and Unicode Data

Before discussing how to create HLA procedure prototypes for all the Win32 API functions, a short digre
sion is necessary in order to understand certain naming conventions in the Win32 API. For many years, tt
were actually two different Win32 OS families: the Windows 95/98/2000ME family and the Windows NT/2000.
XP family. The branch starting with Windows 95 was based on Windows 3.1 and MS-DOS to a large exte
The OS branch that started with NT was written mostly from scratch without concern about legacy (DOS) col
patibility. As such, the internal structure of these two operating system families was quite different. One at
where the difference is remarkable is with respect to character data. The Windows 95 family uses standard e
bit ANSI (ASCII) characters internally while the NT branch uses Unicode internally. Unicode, if you're unfamil-
iar with it, uses 16-bit character codes allowing the use of up to 65,536 different characters. The beauty of L
code is that you can represent most character symbols in use by various languages with a single character
(unlike ASCII, which only supports 128 different character values and isn’t even really adequate for Englis
much less English plus dozens of other languages). Since Microsoft was interested in producing an internatic
operating system, Unicode seemed like the right way to go.

Unicode has some great advantages when it comes to write applications that work regardless of the nat
language of the application’s users. However, Unicode also has some serious disadvantages that prevent it
immediately taking over the world:

» Few software tools directly support Unicode, so it is difficult to develop Unicode-enabled application:
(though this is changing as time passes).

» Unicode data requires twice as much storage as ANSI data. This has the effect of doubling the size
many databases and other applications that manipulate a considerable amount of character data.
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* Because Unicode characters are twice as long as ANSI characters, processing Unicode data typic
takes twice as long as processing ANSI/ASCII characters (a serious defect to most assembly langu
programmers).

* Many programs that manipulate character data use look-up tables and bit maps (character sets) to ope
on that data. An ASCII-based look-up table requires 128 bytes, an ANSI look-up table typically require
256 bytes, a Unicode-based look-up table would require 65,536 bytes (making it impractical to use
look-up table for all but the most specialized of cases when using Unicode). Even implementing a ch:
acter set using a power set (i.e., a bit map) would require 8,192 bytes; still too large for most practic
purposes.

* There are nowhere near as many Unicode-based string library functions available as there are for AS
ANSI based strings. For example, the HLA Standard Library provides almost no Unicode-based stril
functions at all (actually, it provides none, but a few routines will work with Unicode-based strings).

* Another problem with using Unicode is that HLA v1.x provides only basic support for Unicode charac-

ters®. At the time this was being written, HLA supported the declarationrefr andwst ri ng con-

stants and variables as well as Unicode character and string literal constants (of the form u’A’ and
u”’AAA”). You could also initialize wchar and wstring static objects as the following example demon-
strates. However, HLA constant expression parser does not (as of this writing) support Unicode string
operations nor does the HLA Standard Library provide much in the way of Unicode support. The follow
ing is an example of static initialization of Unicode data (see the HLA reference manual for more details

static
wChar Var :wehar (= u' w ;
wStringVar :wstring := u”Unicode String”;
For all these reasons, and many more, Microsoft realized (while designing Windows NT) that they couldr
expect everyone to switch completely over to Unicode when writing applications for Windows NT (or whet

using applications written for Windows NT). Therefore, Microsoft's engineers provided duon?Bn'pItm-

faces to Windows NT that involve character data: one routine accepts and returns ANSI data, another rou
accepts and returns Unicode data. Internally, of course, Windows NT doesn’t really have two sets of routin
Instead, the ANSI routines simply convert incoming data from ANSI to Unicode and the outgoing data from Ur
code to ANSI.

In Microsoft Visual C++ (and other high level languages) there is a little bit of macro trickery used to hide tr
fact that the application has to choose between the Unicode-enabled and the ANSI versions of the Win32 .
function calls. By simply changing one macro definition in a properly-written C++ program, it's possible tc
switch from ANSI to Unicode or from Unicode to ANSI with no other changes to the program. While the sam
trick is theoretically possible in assembly language (at least, in HLA), the dearth of a good set of Unicode libre
functions reduces this to the status of an interesting, but not very useful, trick. Therefore, this book will conce
trate on producing ANSI-compatible applications with a small discussion of how to do Unicode applicatior
when doing so becomes more practical in assembly language.

Windows duomorphic interface only applies to those functions that accept or return character data. A gc
example of such a routine is the Win32 Al et eFi | e function that has the following two interfaces:

procedure DeleteFile( |pFileNanme :string ); @tdcall; @xternal ( “ _DeleteFileA@" );

19.Least you use this as an argument against using HLA, note that HLA actually psomdémicode support. Most
assemblers provide no Unicode support whatsoever at all.
20.Two-faced.
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/1l -or-

procedure DeleteFile( |IpFileNane :wstring ); @tdcall; @xternal( “_Del eteFil ewa” );

If you look closely at these two declarations, you'll notice that the only difference between the two is a sing
character appearing in the external name and the type of the parameter. One of the external names has a
(for ANSI) immediately before the “@” while the other has a “W” (for Wide) immediately before the “@” char-
acter in the name. Wide, in this context, means a two-byte character format; so the name with the embedded
is the Unicode version of the function’s name.

The presence of the “A” or the “W” at the end of the function’s name in the external declaration (i.e., ju:
before the “@”, whose purpose the next section covers) determines whether the function is the ANSI versior
the Unicode version ("A”=ANSI, “W”"=Unicode). There is only one catch: when reading C/C++ documentatior
about the Windows API, you'll generally see the function referred to as “DeleteFile” (or whatever), not “Delete
FileA” or “DeleteFileW”. So how can you tell whether the function’s external name requires the “A” or “W”"?
Well, if any of the parameters involves character or string data, it's a given that the function will have ANSI ar
Unicode counterparts. If you're still not sure, you can always run Microshitgbin.exe utility on one of the
Win32 API interface libraries (e.ckernel32.1ib, gdi32.lib, user32.lib, etc.) to extract all the exported names:

dunpbin /exports kernel 32.1ib

This command lists all the Win32 API function names thakéneel 32.1ib library module exports. If you save

the output of this command to a text file (by using I/O redirection) you can search for a particular function nar
with nearly any text editor. Once you find the filename, if there is an “A” or “W” at the end of the name, yo
know that you've got a duomorphic function that deals with ANSI or Unicode characters. If no such charact
appears, then the function only works with binary (non-character) data.

Please note that the official name for a Win32 API function does not include the “A” or “W” suffix. That is,
the Win32 documentation refers only to names itikeet eFi | e, never to names likeel et eFi | eA oOr Del et e-
Fi | ew The assumption is that an application is only going to use one of the two different character types. Eitl
all character data is ANSI, in which case the application will call those functions with the “A” suffix, or all char:
acter data is in Unicode form and the application will call those functions with the “W” suffix. Although it's easy
enough to switch between the two in an assembly language program, it's probably a good idea to stick to
form or another in a given application (less maintenance issues that way). The examples in this book will all
the ANSI forms of these functions, since assembly language better supports eight-bit character codes.

This book will also adopt the Win32 convention of specifying the API function names without the “A” or
“W” suffix. That is, we’ll call functions likebel et eFi | e andGet Ful | Pat hName and not worry about whether
i's ANSI or Unicode on each call. The choice will be handled in the declaration of the prototype for the partici
lar Win32 API function. This makes it easy (well, easier) to change from one character format to another sho
the need arise in the future.

For the most part, this book will stick to the ANSI character set because HLA provides much better supp
for that character set. If you need to use Unicode in your programs, you'll need to adjust the Win32 API pro
types and HLAchar / st ri ng declarations accordingly.

Note that the names that have the “A” and “W” suffixes are really external names only. C/C++ document
tion doesn’t mention these suffixes. Again, if you're unsure whether the suffix is necessarydunmptine pro-
gram to get the actual library name.
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3.6: Win32 API Functions and the Parameter Byte Count

As you've seen in a few examples appearing in this chapter, the external Win32 API function names typica
have an at-sign (“@”) and a number appended to the end of the function’s external name. This numeric ve
specifies the number of bytes passed as parameters to the functions. Since most parameters are exactly four
long, this number (divided by four) usually tells you how many parameters the API function requires (note tha
few API calls have some eight-byte parameters, so this number isn’'t always an exact indication of the numbe
parameters, but it does hold true the vast majority of the time).

Note that the names that have the “@nn” suffix are really external names only. C/C++ documentati
doesn’t mention this suffix. Furthermore, since HLA doesn’t allow you to embed at signs (“@”) into identifiers
you cannot use these external names as HLA identifiers. Fortunately, @k&s nal directive allows you to
specify any arbitrary string as the external symbol name.

This book will also adopt the Win32 convention of specifying the API function names without the “@nn’
suffix. That is, we’ll call functions likeel et eFi | e andGet Ful | Pat hName and not worry about tacking on the
number of bytes of parameters to the name. The full name will be handled in the external prototype declara
for the particular Win32 API function. If you need to determine the exact constant for use in an external decla
tion, you can run the Microsofiumpbin program on the appropriate .LIB file to determine the actual suffix.

3.7: Creating HLA Procedure Prototypes for Win32 API Functions

Although the HLA distribution includes header files that provide prototypes for most of the Win32 API func
tions (see the next section for details), there are still some very good reasons why you should be able to cr
your own HLA external declarations for a Win32 function. Here is a partial list of those reasons:

* HLA provides most, but not all, of the Win32 API Prototypes (e.g., as Microsoft adds new API calls t«
Windows, HLA's header files may become out of date).

* Not every HLA prototype has been thoroughly tested (there are over 1,500 Win32 API function calls or
could make and some of those are quite esoteric). There very well could be a defect in the prototype
some function that you want to call.

» The choice of data type for a give API function may not exactly match what you want to use (e.g., it cou
specify aruns32 type when you'd prefer the more genetsir d type).

* You may disagree with the choice of passing a parameter by reference versus passing a pointer by va
* You may disagree with the choice of an untyped reference parameter versus a typed reference param
* You may disagree with the choice of an HLA string type versus a character buffer.

There are certainly some other reasons for abandoning HLA's external prototypes for various Win32 API fur
tions. Whatever the reason, being able to create an HLA prototype for these functions based on documentze
that provides a C prototype is a skill you will need. The following subsections condense the information appe
ing in the previous sections, toss out a few new ideas, and discuss the “hows and whys” of Win32 API protot:
ing in HLA.

3.7.1:  C/C++ Naming Conventions Versus HLA Naming Conventions

Before jumping in and describing how to translate C/C++ prototypes into HLA format, a slight digression |
necessary. Sometimes, you'll run into a minor problem when translating C/C++ code to HLA: identifiers in a ¢
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C++ program don’t always map to legal identifiers in an HLA program. Another area of contention has to ¢
with the fact that Microsoft's programmers have created many user-defined types that the Windows system u
More often than not, these type names are isomorphisms (that is, a different name for the same thing; for ex
ple, Microsoft defines dozens, if not hundreds, of synonymsatord). However, if you understand Microsoft's
naming conventions, then figuring out what HLA types to substitute for all these Microsoft names won't pro.
too difficult.

HLA and C/C++ use roughly the same syntax for identifiers: identifiers may begin with an alphabeti
(uppercase or lowercase) character or an underscore, and zero or more alphanumeric or underscore char:
may follow that initial character. Given that fact, you'd think that converting C/C++ identifiers to HLA would be
fairly trivial (and most of the time, it is). There are, however, two issues that prevent the translation from bei
completely trivial: HLA reserved words and case sensitivity. We'll discuss these issues shortly.

Even when a C/C++ identifier maps directly to a legal HLA identifiers, questions about that identifier , it
readability, applicability, etc., may arise. Unfortunately, C/C++ naming conventions that have been created o
the years tend to be rather bad conventions (remember, C was create circa-1970, back in the early days of “
ware engineering” before people really studied what made one program more readable than another). Unfc
nately, there is a lot of inertia behind these bad programming conventions. Someone who is not intimat
familiar with those conventions may question why a book such as this one (which covers a different languz
than C/C++) would continue to propagate such bad programming style. The reason is practical: as this cha
continues to stress, there is a tremendous amount of documentation written about the Win32 API that is C-ba
While there is an aesthetic benefit to renaming all the poorly-named identifiers that have become standards i
C++ Windows source files, doing so almost eliminates the ability to refer to non-HLA based documentation
the Win32 API. That would be a much greater loss than having to deal with some poorly named identifiers. |
that reason alone, this book attempts to use standard Windows identifiers (which tend to follow various C/C
naming conventions) whenever referring to those objects represented by the original Windows identifie
Changes to the Windows naming scheme are only made where absolutely necessary. However, this book
only use the Windows naming conventions for pre-existing, reknown, Windows (and C/C++) identifiers. Th
book will adopt the standard “HLA naming convention” (given a little later) for new identifiers.

One problem with C/C++ naming conventions is that they are inconsistent. This is because there isn't a
gle C/C++ naming convention, but several that have sprung up over the years. Some of them contain mutu
exclusive elements, still it isn’t unusual to see several of the conventions employed within the same source f
Since the main thrust of this chapter is to prepare you to read Win32 APl documentation, the sections that fol
will concentrate on those conventions and problems you'll find in typical Windows documentation.

3.7.1.1; Reserved Word Conflicts

The HLA language defines hundreds of reserved words (this is reasonable, since there are hundred
machine instructions in the 80x86 instruction set, though there is no arguing against that fact that HLA ha
large number of reserved words above and beyond the machine instructions). Since not all of HLA's resen
words are reserved words in C/C++, it stands to reason that there are some programs out there than inadvert
use HLA reserved words as identifiers in their source code. This fact is just as true for the Win32 API definitic
appearing in Microsoft's C/C++ header files as it is for application programs. There will be some C/C++ iden
fiers in the Win32 C/C++ documentation that we will not be able to use simply because they are HLA reseryv
words. Fortunately, such occurrences are rare. This book will deal with such issues on a case-by-case basis
viding a similar name that is not an HLA reserved word when such a conflict arises.
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3.7.1.2: Alphabetic Case Conflicts

Another point of conflict between HLA identifiers and C/C++ identifiers is the fact that C/C-cags sen-

sitive language whereas HLA iscase neutral language. HLA treats upper and lower case characters as distinct,
but will not allow you to create an identifier that is the same as a different identifier except for alphabetic case.
C++, on the other hand, will gladly let you create two different identifiers whose only difference is the case
alphabetic characters within the symbols. Worse, some C/C++ programmers have convinced themselves tha
actually a good idea to take advantage of this “feature” in the language (hinteitike idea to do this, it make
programs harder to read and understand). Regardless of your beliefs of the utility of this particular programm
style, the fact remains that C/C++ allows this (and some programmers take advantage of it) while HLA does r
The question is “which identifier do we modify and how do we modify it?”

Most of the time there is a case neutrality violation in a C/C++ program (that is, two identifiers are the sar
except for alphabetic case), it's usually the situation where one of the identifiers is either a type definition o
constant definition (the other identifier is usually a function or variable name). This isn't true all the time, but
is true in the majority of the cases where this conflict occurs. When such a conflict occurs, this book will use
following convention (prioritized from first to last):

» If one of the conflicting identifiers is a type name, we’ll convert the name to all lowercase characters a
append “_t” to the name (a common Unix convention).

» If one of the conflicting identifiers is a constant (and the other is not a type), we’ll convert the name to :
lowercase and append “_c” to the name (an HLA convention, based on the Unix convention).

» If neither of the above conditions hold, we’ll give one of the identifiers a more descriptive name based c
what the identifier represents/contains/specifies rather than on its classification (e.g., type of symbol).

A good convention to follow with respect to naming identifiers is the “telephone test.” If you can read a lin
of source code over the telephone and have the listener understand what you're saying without explicitly spel
out an identifier, then that identifier is probably a decent identifier. However, if you have to spell out the iden
fier (especially when using phrases like “upper case” and “lower case” when spelling out the name), then
should consider using a better name. HLA, of course, prevents abusing and misusing alphabetic case in idel
ers (being a case neutral language), so it doesn’t even allow one to create identifiers that violate the telephone
(at least, from an alphabetic case perspective).

3.7.1.3: Common C/C++ Naming Conventions

If you search on the Internet for “C Naming Conventions” you'll find hundreds of pages extolling the benefil
of that particular web page author’s favorite C naming scheme. It seems like nearly every C programmer with
opinion and a web page is willing to tell the world how identifiers should be designed in C. The really funr
thing is that almost every one of these pages that specifies some naming convention is mutually exclusive \
ewery other such scheme. That is, if you follow the rules for naming C identifiers found at one web site, you
invariably break one or more rules at nearly every other site that provides a C naming convention. So much
convention; so much for standards.

Interestingly enough, the one convention that nearly everybody agrees upon is also, perhvaps, the-
ing convention ever invented for programming language identifiers. This is the convention of using all uppercs
characters for identifiers that represent constant values. The reason everyone agrees on this one convent
fairly obvious to someone who has been programming in the C programming language for some time: this is -
of the few naming conventions proposed by Kernighan and Ritchie in their original descriptiliaet€xiPro-
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gramming Language. In Programming in C: A Tutorial by Brian W. Kernighan, Mr. Kernighan describes this
choice thusly:

Good style typically makes the name in the #define upper case; this makes parameters more visi-
ble.

This quote probably offers some insight into why Kernighan and Ritchie proposed the use of all upperce
for constants in the first place. One thing to keep in mind about this naming convention (using all upper case
#define symbols) was that it was developed in the very early 1970s. At the time, many mainframes and progr
ming languages (e.g., FORTRAN) only worked with uppercase alphabetic characters. Therefore, programrr
were used to seeing all uppercase alphabetic characters in a source file and lowercase was actually un
(despite the fact that C was developed on an interactive system that supported lower case). In fact, Kernic
and Ritchie really got it backwards - if they’d wanted the parameters to stand out, they should have made then
uppercase and made the #define name lower case. Another interesting thing to note from this quote was the
all uppercase convention was specifically createdrimros, not manifest constants. The “good style” Brian
Kernighan was referring to was an attempt to differentiate the macro name from the macro parameters. Man
constants (that is, the typical constants you create with a #define definition) don’t have parameters, so there i
tle need to differentiate the name from the macro’s parameter list (unless, of course, Mr. Kernighan was treat
the remainder of the line as the “parameters” to the #define statement).

Psychologists have long known (long before computer programming languages became popular) that up
case text is much harder to read than lower case text. Indeed, to a large extent, the whole purpose of uppe
alphabetic text is to slow the reader down and make them take notice of something. All uppercase text me
material harder to read, pure and simple. Don't believe this? Try reading the following:

PSYCHOLOGISTS HAVE LONG KNOWN (LONG BEFORE COMPUTER PROGRAMING
LANGUAGES BECAME POPULAR) THAT UPPERCASE TEXT IS MUCH HARDER TO
READ THAN LOWER CASE TEXT. INDEED, TO A LARGE EXTENT, THE WHOLE PUR-
POSE OF UPPERCASE ALPHBETIC TEXT IS TO SLOW THE READER DOWN AND
MAKE THEM TAKE NOTICE OF SOMETHING. ALL UPPERCASE TEXT MAKES MATE-
RIAL HARDER TO READ, PURE AND SIMPLE. DON'T BELEVE THIS? TRY REREAD-
ING THIS PARAGRPH.

There are four intentional spelling mistakes in the previous paragraph. Did you spot them all the first time y
read this paragraph? They would have been much more obvious had the text been all lowercase rather the
uppercase. Reading all upper case text is so difficult, that most readers (when faced with reading a lot of it) t
to “short-circuit” their reading and automatically fill in words once they've read enough characters to convinc
them they've recognized the word. That's one of the reasons it's so hard to immediately spot the spelling n
takes in the previous paragraph. Identifiers that cause a lack of attention to the details are obviously problen
in a programming language and they’re not something you want to see in source code. A C proponent mi
argue that this isn’t really much of a problem because you don’t see as much uppercase text crammed togeth
you do in the paragraph above. However, some long identifiers can still be quite hard to read in all upper c:
consider the following identifier taken from the C/C+#windows.inc header file set:
CAL_SABBREVMONTHNAMEL. Quick, what does it mean?

Sometimes it is useful to make the reader slow down when reading some section of text (be it natural |
guage or a synthetic language like C/C++). However, it’'s hard to argue that every occurrence of a constant
source file should cause the reader to slow down and expend extra mental effort just to read the name (thus, t
fully, determining the purpose of the identifier). The fact that it is a constant (or even a macro) is far more ea:
conveyed using some other convention (e.g., the “_c” convention that this book will adopt).

Now some might argue that making all macro identifiers in a program stand out is a good thing. After all, C
macro preprocessor is not very good and it's macro expander produces some unusual (non-function-like) ser
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tics in certain cases. By forcing the programmer to type and read an all-uppercase identifier, the macro’s desi
is making them note that this is not just another function call and that it has special semantics. An argument
this is valid for macros (though a suffix like “_m” is probably a better way to do this than by using all upperca:
characters in the identifier), but is completely meaningless for simple manifest constants that don't provide ¢
macro parameter expansion. All in all, using all uppercase characters for identifiers in a program is a bad tt
and you should avoid it if at all possible.

This text, of course, will continue to use all uppercase names for well-known constants defined in Microsof
C/C++ header files. The reason is quite simple: they are documented in dozens and dozens of Windows prog
ming books and despite the fact that such identifiers are more difficult to read, changing them in this text wo
prove to be a disaster because the information appearing herein would not be compatible with most of the o

books on Windows programming in C/C¥+ For arbitrary constant identifiers (i.e., those that are not pre-
defined in the C/C++ Windows header files), this book will generally adopt the “_c” convention for constants.

One C/C++ naming convention that is specified by the original language definition is that identifiers th
begin and end with an underscore are reserved for use by the compiler. Therefore, C/C++ programmers sh
not use such identifiers. This shouldn’t prove to be too onerous for HLA programmers because HLA imposes
same restriction (identifiers beginning and ending with an underscore are reserved for use by the compiler
the HLA Standard Library).

Beyond these two conventions that have existed since the very first operational C compilers, there is very
tle standardization among the various “C Naming Conventions” documents you’ll find on the Internet. Mar
suggestions that one document makes are style violations another document expressedly forbids. So muc
standardized conventions! The problem with these myriad of non-standardized “standards” is that unless
include the style guide in the comments of a source file, the guidelines you're following are more likely to co
fuse someone else reading the source file who is used to operating under a different set of style guidelines.

Perhaps one of the most confusing set of style guidelines people come up with for C/C++ programs is wha
do about alphabetic case. Wise programmers using alphabetic case differences for formatting only. They n
attach meaning to the case of alphabetic characters within an identifier. All upper case characters for constar
fairly easy to remember (because it is so well ingrained in just about every C/C++ style guide ever written), |
how easy is it to remember that “variables must be written in mixed case starting with a lower case charact
and “Names representing types must be in mixed case beginning with an uppercase character’? There are :
so-called style guidelines that list a dozen different ways to use alphabetic case in an identifier to denote
thing or another. Who can remember all that? What happens when someone comes along and doesn’t intim.
know the rules? Fortunately, you see little of this nonsense in Windows header files.

As noted earlier in this document, a common (though not ubiquitous) Unix/C programming convention is
append the suffix “_t” to type identifiers. This is actually an excellent convention (since it emphasizes the clas
fication of an identifier rather than its type, scope, or value). The drawback to this scheme is that you rarely se
used consistently even within the same source file. An even bigger drawback is that you almost never see
naming convention in use in Windows code (Windows code has a nasty habit of using all uppercase to der
type names, as well as constant, macro, and enum identifiers, thus eliminating almost any mnemonic value
use of all uppercase might provide; about the only thing you can say about an all-uppercase symbol in a V
dows program is that it's probably not a variable or a function name). Once again, this book will use stand:
Windows identifiers when referencing those IDs, but will typically use the Unix convention of the “_t” suffix
when creating new type names.

21.Note, however, that there is a precedent for changing the Win32 API identifiers around when programming in a language
other than C/C++. Borland’s documentation for Delphi, for example, changes the spelling of many Windows identifiers to
something more reasonable (note, however, that Pascal is a case insensitive language and some changes were necessary f
that reason alone).
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Without question, the most common naming convention in use within C/C++ Windows applications is th
use ofHungarian Notation. Hungarian notation uses special prefix symbols to denote the type of the identifiel
Since Hungarian notation is so prevalent in Windows programs, it's worthwhile to spend some time covering it
detail...

3.7.1.4: Hungarian Notation

Hungarian notation is one of those “innovations” that has come out of Microsoft that lots of people love ar
lots of people hate. Originally developed by Charles Simonyi in a technical paper (searching on the Internet
“Hungarian Notation Microsoft Charles Simonyi” is bound to turn up a large number of copies of his paper (¢
links to it), Hungarian notation was adopted internally within Microsoft and the popularized outside Microsof
via the Windows include files and Charles Petzold’s “Programming Windows” series of books (which push Hu
garian notation). As a result of these events, plus the large number of programmers that “cut their teeth’
Microsoft and went on to work at companies elsewhere, Hungarian notation is very a popular naming convent
and it’s difficult to read a C/C++ Windows program without seeing lots of examples of this notation.

Hungarian notation is one of those conventions that everyone loves to hate. There are lots of good, techn
reasons for not using Hungarian notation. Even many proponents of Hungarian notation will admit that it has
problems. However, people don’t use it simply because Microsoft pushes it. In spite of the problems with HL
garian notation, the information it provides is quite useful in large programs. Even if the convention wasn'’t th
useful, we'd still need to explore it here because you have to understand it in order to read C/C++ code; s
because it is somewhat useful, this book will even adopt a subset of the Hungarian notation conventions on ar
useful” basis.

Hungarian notation is a naming convention that allows someone reading a program to quickly determine
type of a symbol (variable, function, constant, type, etc.) without having to look up the declaration for that syr
bol. Well, in theory that’s the idea. To someone accustomed to Hungarian notation, the use of this convention
save some valuable time figuring out what someone else has done. The basic idea behind Hungarian notatior
add a concise prefix to every identifier that specifies the type of that identifier (actually, full Hungarian notatic
specifies more than that, but few programmers use the full form of Hungarian notation in their programs). In tt
ory, Hungarian notation allows programmers to create their own type prefixes on an application by applicati
basis. In practice, most people stick to the common-predefined type prefixes (tags) let it go at that.

An identifier that employs Hungarian notation usually takes the following generic form:
prefix tag qualifier baseldentifier

Each of the components of the identifier are optional, subject of course, to the limitation that the identifier mi
contain something. Interestingly enough,libgel denti fi er component (the name you’d normally think of as
the identifier) is itself optional. You'll often find Hungarian notation “identifiers” in Windows programs that con-
sist only of a possible prefix, tag, and/or qualifier. This situation, in fact, is one of the common complaints abc
Hungarian notation - it encourages the use of meaningless identifiers in a source fikeseTkHenti fier in
Hungarian notation is the symbol you'd normally use if you weren't using Hungarian notation. For the sake
example, we’ll usevari abl e in the examples that follow as our base identifier.

Thetag component in the Hungarian notation is probably the most important item to consider. This iter
specifies the base type, or use, of the following symbol. Table 3-12 lists many of the basic tags that Windows |
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grams commonly use; note that Hungarian notation does not limit a program to these particular types, the us:
free to create their own tags.

Table 3-12: Basic Tag Values in Hungarian Notation

Teg Description

f Flag. This is a true/false boolean variable. Usually one byte in length. Zero represents false,
anything else is true.

ch Character. This is a one-byte character variable.

w Word. Back in the days of 16-bit Windows systems (e.g., Windows 3.1), this tag meant a 16-
bit word. However, as a perfect demonstration of one of the major problems with Hungarian
notation, the use of this prefix became ambiguous when Win32 systems started appearing.
Sometimes this tag means 16-bit short, sometimes it means a 32-bit value. This prefix/doesn’t
provide much in the way of meaningful information in modern Windows systems.

b Byte. Always a one-byte value.

I Long. This is generally a long integer (32 bits).

dw Double Word. Note that this is not necessarily the same thing as an “I” object. In theqry, the
usage of this term is as ambiguous as “w”, though in 80x86 Windows source files this |s
almost always a 32-bit double word object.

u Unsigned. Typically denotes an unsigned integer value (usually 32 bits). Sometimes you will
see this symbol used as a prefix to one of the other integer types, e.g., uw is an unsigned wort

r Real. Four-byte single precision real value.

d Double. Eight-byte double precision real value.

bit A single bit. Typically used with field names that are bit fields within some C struct.

bm Bit map. A collection of bits (e.g., pixel values).

% Void. An untyped object. Typically used only with the pointer prefix (see the discussion of
prefixes). Untyped pointers are always 32 bit objects under Win32.

st String. Object is a Pascal string with a length prefix.

sz String, zero terminated. Object is a C/C++ zero terminated string object.

In Table 3-12 you see the basic type values commonly associated with symbols employing Hungarian nc
tion. Table lists some modifier prefixes you may apply to these types (though there is no requirement that a
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appear after one of the prefixes, a lone prefix followed by the base identifier is perfectly legal, though not as re
able as an identifier consisting of a prefix, tag, and base identifier).

Table 3-13: Common Prefix Values in Hungarian Notation

Prefix Description
p Pointer to some type.
Ip Long pointer to some type. Today, this is a synonym for “p”. Back in the days of 16-bit

Windows system, an “Ip” object was 32 bits and a “p” object was 16 bits. Today, bpth
pointer types are identical and are 32 bits long. Although you'll see this prefixed used
quite a bit in existing code and header files, you shouldn’t use this prefix in new code.

hp Huge pointer to some type. Yet another carry-over from 16-bit Windows days. Today,
this is synonymous with Ip and p. You shouldn’t use this prefix in new code.

rg Lookup table. Think of an index into an array as a function parameter, the functions
result (i.e., the table entry) is thange of that function, hence the designation “rg”. This
one is not common in many Windows programs.

[ An index (e.g., into an array). Also commonly employed tor loop control variables.

C A count. cch, for example, might be the number of characters in some array of characters.

n A count. Same as ¢ but more commonly used to avoid ambiguity with ch.

d The difference between two instances of some type. For example, dX might be the differ-
ence between to x-coordinate values.

h A Handle. Handles are used through Windows to maintain resources. Many Win32 API
functions require or return a handle value. Handles are 32-bit objects under Win32.

v A global variable. Many programmers use ‘g’ rather than ‘v’ to avoid confusion with the
‘v’ basic tag specification.

S A static variable (local or global)

k A const object.

Here are some examples of names you’ll commonly see (e.g., from the Windows.hhf header file) that dem
strate the use of these identifiers:

char *1pszString; /1l Pointer to zero-term nated string of characters.
int *pchAnswer; /1 Pointer to a single character hol ding an answer.
HANDLE hFi |l e; /1 Handle of a file.

Note all of these prefixes and tags are equally popular in Windows programs. For example, you'll rarely <
the “k” prefix specification in many Windows source files (instead, the programmer will probably use the con
mon C/C++ uppercase convention to denote an identifier). Also, many of the prefix/tag combinations are amt
uous. Fortunately, few people (including the Windows header files) push Hungarian notation to the lim
Usually, you'll just see a small subset of the possibilities in use and there is little ambiguity.
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Another component of Hungarian notation, though you’ll rarely see this used in real life, is a qualifier. Mot
often that not, qualifiers (if they appear at all) appear in place of the base identifier name. Table lists some of
common qualifiers used in Hungarian notation.

Table 3-14: Common Qualifiers in Hungarian Notation

Qualifier Description

First The first item in a set, list, or array that the program is working with (this does not necessarily
indicate element zero of an array). E.g., iFirstElement.

Last The last item in a set, list, or array that the program has worked upon (this does not ne¢essaril
indicate the last element of an array or list). E.g., pchLastMember. Note that Last index pbjects
are always valid members of the set, list, or array. E.g., array[ iLastindex ] is always a valid

array element.

Min Denotes the minimum index into a set, list, or array. Similar to First, but First specifies the first
element you're dealing with rather than the first object actually present.

Max Denotes an upper limit (plus one, usually) into an array or list.

There are many, many different variants of Hungarian notation. A quick perusal of the Internet will demol
strate that almost no one really agrees on what symbols should be tags, prefixes, or qualifiers, much less whe
individual symbols in each of the classes actually mean. Fortunately, the Windows header files are fairly con:
tent with respect to their use of Hungarian notation (at least, where they use Hungarian notation), so there w
be much difficulty deciphering the names from the header files that we’ll use in this book.

As for using Hungarian notation in new identifiers appearing in this book, that will only happen when it
really convenient to do so. In particular, you'll see the “h” (for Handle) and “p” (for pointer) prefixes used quit:
a bit. Once in a while, you may see some other bits and pieces of Hungarian notation in use (e.g., b, w, anc
for byt e, wor d, anddwor d objects). Beyond that, this book will attempt to use descriptive names, or at least
commonly used names (e.g., j , andk for array indexes) rather than trying to explain the identifier with a syn-
thetic prefix to the identifier.

3.8: The w.hhf Header File

Provided with the HLA distribution is thehhf include file that define most of the Win32 API functions, con-
stants, types, variables, and other objects you’ll ever want to reference from your assembly language code. A
all, you're talking well over 30,000 lines of source code! It is convenient to simply stick an#iticAude
statement like the following into your program and automatically include all the Windows definitions:

#i ncl ude( “w. hhf” )

The problem with doing this is that it effectively increases the size of your source file by 30,000 lines of coc
Fortunately, recent modifications to HLA have boosted the compile speed of this file to about 25,000 lines/s
ond, so it can process this entire include file in just a few seconds. Most people don't really care if an assen
takes two or three seconds, so including everything shouldn’t be a problem (note that the inclusion of all t
code does not affect the size of the executable nor does it affect the speed of the final program you’re writing
only affects the compile-time of the program). For those who are bothered by even a few seconds of com
time, there is a solution.
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A large part of the problem with the HLA/Windows header files is that the vast majority of the time you'll
never use more than about 10% of the information appearing in these header files. Windows defines a tremen
number of esoteric types, constants, and API functions that simply don’'t get used in the vast majority of Wi
dows applications. If we could pick out the 10% of the definitions that you were actually going to use on yo
next set of projects, we could reduce the HLA compilation overhead to almost nothing, far more acceptable
those programmers that are annoyed by a few seconds of delay. To do this, you've got to extract the declarai
you need and put them in a project-specific include file. The examples in this book won’'t bother with th
(because compiling thahhf file is fast enough), but feel free to do this if HLA compile times bother you.

3.9: And Now, on to Assembly Language!

Okay, we've probably spent enough time discussing C/C++ in a book dedicated to writing Windows pr
grams in assembly language. The aim of this chapter has been to present a firm foundation for those who ne
learn additional Windows programming techniques by reading C/C++ based documentation. There is no wa
single chapter (even one as long as this one) can completely cover all the details, but there should be ent
information in this chapter to get you well on your way to the point of understanding how to interface with Wir
dows in assembly language by reading C/C++ documentation on the subject. Now, however, it's time to turn «
attention to writing actual Windows applications in assembly language.
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