
HLA Standard Library Reference
38 Timer Class and Module (timer.hhf)

The HLA Timer module provides a set of routines that let you time events with millisecond precision.
Note: Like documentation for most standard library modules that are based on an HLA class, this document

does not provide examples of low-level calls to the timer functions. If you’re interested in making low-level
machine instruction calls to the methods in the timer class, please consult the HLA documentation concerning
classes and objects.

A Note About Thread Safety: The timer module maintains various values within each object. If you
attempt to manipulate the same object from different threads in a multi-threaded application, you may get
inconsistent results. Therefore, you should only call the procedures and methods for a particular timer object
from one thread or you must explicitly control access to those methods to prevent concurrent execution of the
same object’s methods from different threads. Note that you may call the methods for different timer objects
from different threads.

38.1 Timer Module
To use the timer functions in your application, you will need to include one of the following statements at

the beginning of your HLA application:
#include("timer.hhf")
or
#include("stdlib.hhf")

38.2 Timer Class/Data Structure
The Timer module is actually a class with the following definition:

timer_t: class

 var
 Accumulated: qword;

 DateStarted: date.daterec;
 TimeStarted: time.timerec;
 msStarted: uns32;

 DateStopped: date.daterec;
 TimeStopped: time.timerec;
 msStopped: uns32;

 Running: boolean;
 Valid: boolean;

 procedure create; external;

 method start; external;
 method restart; external;
 method stop; @returns("edx:eax"); external;
 method checkPoint; @returns("edx:eax"); external;

 endclass;

Don’t forget that the timer_t class, like all class objects, will modify the values of the ESI and EDI registers
whenever you call a class procedure or method. So don’t expect values in ESI or EDI to be preserved across the
calls in this module.
Released to the Public Domain Page 1133

HLA Standard Library
38.3 Timer Operation
The timer_t class maintains an accumulation of time. When you create a class object, or when you call the

timer_t.start method, the system initializes this 64-bit unsigned integer value to zero. When you call the
timer_t.start method, the system notes the point at which you called the method so it can compute the amount of
accumulated time when you call timer_t.stop or timer_t.checkPoint at some point in the future. It is important
that you realize that the class’ timer_t.Accumulated field does not contain a real-time representation of the
elapsed time. When you call timer_t.stop, the object will compute the amount of elapsed time since the call to
timer_t.start and will update timer_t.Accumulated with this value. So to time a simple sequence of events, you
would first call timer_t.start, do whatever it is that you want to time, and then call timer_t.stop when you’re
finished with the events you want to time. On return from timer_t.stop, the EDX:EAX register pair will contain
the 64-bit elapsed time value, or you can retrieve the value from the object’s timer_t.Accumulated field.

If you would like to compute the current elapsed time during some timing sequence, but you do not want to
stop the timing operation, you can call the timer_t.checkPoint method. This method will update the
timer_t.Accumulated field with the elapsed time up to that point without stopping the timer operation. The
timer_t.checkPoint function call will also return the total accumulated time in the EDX:EAX register pair. The
timer will continue running until you call the timer_t.stop method at some point in the future. Note that you may
call timer_t.checkPoint as many times as you like between the timer_t.start and timer_t.stop method calls. Note,
however, that you may only call timer_t.checkPoint while the timer is actually running.

For more complex timing applications, it is possible to start, stop, and restart the timer without resetting the
accumulated value to zero. Restarting the timer after calling timer_t.stop is possible by calling the timer_t.restart
method. The timer_t.restart method is functionally equivalent to timer_t.start except that it doesn’t zero out the
timer_t.Accumulated field. When you call timer_t.stop after a timer_t.restart method invocation, the
timer_t.accumulated field is updated with the sum of its previous value plus the measured time between the
timer_t.restart and timer_t.stop calls. Of course, you can make multiple calls to the timer_t.restart/timer_t.stop
methods to accumulate time over longer periods.

38.4 Timer Class Fields

timer_t.Accumulated

This field contains the computed time in milliseconds. This field is only valid if the timer_t.Valid field
contains true. If timer_t.Running contains true, then the timer is still running and the timer_t.Accumulated field
contains the number of milliseconds at the last timer_t.checkPoint or timer_t.restart operation.

timer_t.DateStarted
timer_t.TimeStarted
timer_t.msStarted
timer_t.DateStopped
timer_t.TimeStopped
timer_t.msStopped

These are internal variables to the class. You should not modify their values nor should you read their
values and use them for anything.

timer_t.Running

This boolean variable indicates that the timer object is currently timing some event. You may read this
variable but you should not modify its value.

38.5 Timer Procedures and Methods
procedure timer_t.create; @returns("esi");

This is the constructor for the class. If you call it via "someObjectName.create();" then this static class
procedure will initialize the fields of the specified object. If you call it via "timer_t.create();" then timer_t.create
will dynamically allocate storage for a timer_t object and initialize that storage. This call will return a pointer to
the new object in the ESI register.
Page 1134 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

timer_t.create();
mov(esi, timerPtrVar);

timerClassVar.create();

method timer_t.start;

This method will initialize the timer so it can begin timing some sequence. Note that this call will set the
timer_t.Running field to true and the timer_t.Valid field to false. Use the timer_t.stop method call to stop the
timing operation. This call will also initialize the timer_t.Accumulated field to zero. Calling this method on a
timer that is already running will reset the accumulated time to zero. See timer_t.restart if you want to start the
timer running without clearing the timer_t.Accumulated field.

HLA high-level calling sequence examples:

timer_t.create();
mov(esi, timerPtrVar);

.

.

.
timerPtrVar.start();

.

.

.
timerPtrVar.stop();
mov(edx:eax, qwordTimerValue);// Accumulated time

method timer_t.stop; @returns("edx:eax");

This method will stop the timer accumulation and returns the accumulated time in EDX:EAX. This call sets
timer_t.Valid to true and timer_t.Running to false.

method timer_t.restart;

This method restarts the timer after you’ve stopped the timing via timer_t.stop. Note that the result
accumulated will be the sum of the previous accumulation plus the new time.

method timer_t.checkPoint;

This computes the current time in timer_t.Accumulated without stopping the timer.
That is, timer_t.Valid will be set to true and timer_t.Running will remain true.
Released to the Public Domain Page 1135

HLA Standard Library
Page 1136 Version: 5/24/10 Written by Randall Hyde

	38 Timer Class and Module (timer.hhf)
	38.1 Timer Module
	38.2 Timer Class/Data Structure
	38.3 Timer Operation
	38.4 Timer Class Fields
	timer_t.Accumulated
	timer_t.DateStarted timer_t.TimeStarted timer_t.msStarted timer_t.DateStopped timer_t.TimeStopped timer_t.msStopped
	timer_t.Running

	38.5 Timer Procedures and Methods
	procedure timer_t.create; @returns("esi");
	method timer_t.start;
	method timer_t.stop; @returns("edx:eax");
	method timer_t.restart;
	method timer_t.checkPoint;

