
HLA Standard Library Reference
27 RPC: The Remote Procedure Calls Library

The HLA Standard Library Remote Procedure Call (RPC) module provides a very easy-to-use mechanism 
for creating and calling remote procedures. A remote procedure is one that exists in a different process space 
(possibly even on a different machine). One program (the local process) invokes a procedure within a second 
program (the remote process). To a very large degree, the HLA stdlib RPC module lets you define and call 
remote procedures in a manner quite similar to defining and calling local procedures.

The HLA Stdlib rpc.hhf module includes a small compiler for a mini-language that processes remote 
procedure declarations. Once you declare a remote procedure prototype in this mini-language (and the 
declarations will prove familiar to HLA programmers), very little additional syntax is needed to support remote 
procedure calls.

27.1  Types of Remote Procedures
The HLA stdlib RPC module supports three types of remote procedures: synchronous, bisynchronous, and 

asynchronous. These three procedure types allow you to balance flexibility and ease-of-use when writing and 
calling remote procedures.

A synchronous remote procedure comes the closest to resembling local procedure call semantics. When you 
call a synchronous remote procedure from some local process, that call will not return until the remote 
procedures returns from the call (and the remote procedure server sends an indication of this to the local process). 
Synchronous remote procedures are the easiest to understand because they mimic, to a fair degree, the semantics 
of a local procedure call.

An asynchronous remote procedure call does not block while waiting for the remote procedure to complete 
execution. Once the local proxy function1 marshalls2 all the parameters and transmits them to the remote 
procedure server, the procedure immediately returns and program execution continues in the local process. 
Asynchronous procedure calls are generally much faster (on the local machine) because the asynchronous 
procedure call doesn’t have to way for the remote procedure to finish (and send an acknowledgement over the 
network, which can be slow).

Bisynchronous procedures are a combination of synchronous and asynchronous procedures. The initial call 
is asynchronous, but there is a special function that you can call that will block the local process until the remote 
procedure returns (and the remote server acknowledges this). Bisynchronous procedures have one additional 
benefit not present in the other two remote procedure forms: you can return function results from a remote 
procedure when using bisynchronous calls.

27.2  Remote Procedure Call (RPC) Protocol
The HLA stdlib RPC module supports a peer-to-peer remote procedure call protocol. This protocol is built 

upon network sockets and is OS independent (that is, the HLA stdlib RPC code does not rely upon any particular 
RPC facilities provided by a specific operating system). The protocol operates in a  dual client/server 
architecture. There are two processes involved in a remote procedure call; the server process is where the remote 
procedures reside, the client process calls the remote procedures. The protocol is a dual client/server model 
because the client process also runs a background server to receive responses and acknowledgements from the 
server. For this reason, a remote procedure server can only service one client at a time (effectively making this a 
peer-to-peer architecture).

Note that the RPC server code runs in a separate thread on the server machine. This means that in addition to 
linking in the socket library, code that uses remote procedures must also link in the threads module (and, 
therefore, you must supply the "-thread" command-line parameter on all modules you compile).

This architecture forces some important limitations. First of all, as just noticed, a set of remote procedures 
under the control of a remote server can only be called by one client until the client gives up the network 
connection to the server. This limitation isn’t as bad as it seems because it’s perfectly possible to run multiple 
RPC servers within the same process. So one program could be running multiple RPC servers and serving 
multiple clients, though this is not expected to be a common usage of the HLA RPC module.

The RPC server serializes all calls made to it. Although the local process can run multiple threads, with each 
thread making remote procedure calls, the calls are received one at a time in the server and queued up for 
execution. The server retrieves on request at a time, executes the associated code, acknowledges the call (if 

1. A proxy function is a local procedure that is stand-in for the remote procedure. Calling a proxy function uses the same
syntax as the actual function; the proxy collects all the arguments (marshalls them) and transmits the arguments to the remote
procedure server for execution.
2. Marshall, in this context, means to collect the arguments into a single package.
Released to the Public Domain Page 745



HLA Standard Library
synchronous or bisynchronous), and the fetches and processes the next call request. One advantage to this 
approach is that the remote procedures can assume that they are not executing concurrently (with respect to one 
another). If concurrent execution is an absolute necessity, the solution is the same as for multiple clients -- just 
run multiple RPC servers in the remote process and make the calls to different RPC servers; those calls will run 
concurrently (and it will be your responsibility to synchronize access to shared objects).

On the local process side, the HLA RPC module serializes calls to a single remote procedure. That is, if two 
different threads call the same remote procedure call (at the same time), the RPC library will block one of the two 
procedure calls until the other returns. For asynchronous RPCs, this is only as long as it takes to marshall the 
parameters and transmit them to the remote server. For synchronous and bisynchronous calls, the second call is 
blocked until the first one is acknowledged.  In theory, this could also be fixed by running multiple servers 
(calling the same code on the remote server), but this would create some synchronization problems you’d have to 
handle manually.

Although a major goal (indeed, the main goal) of the HLA stdlib RPC module is to minimize the semantic 
differences between local and remote procedure calls, there are some things that are impractical to simulate in a 
remote procedure call and return. For example, changes to register values on the remote machine will not be 
reflected in the registers in the local process (in theory, it might be possible to do this, but it would be too 
expensive to do so). Likewise, because the local and remote processes run in different address spaces (indeed, 
usually on different machines) passing parameters by reference (or by any other scheme other than by value) is 
impractical.

27.3  The RPC Declaration Language (RDL)
The primary goal of the HLA stdlib RPC module is to minimize the (syntactical) differences between remote 

and local procedure calls. Largely, this is accomplished via the RPC Declaration Language (RDL). You make the 
RDL available to your programs by including the rpc.hhf header file at an appropriate spot at the beginning of 
your source file (e.g., near the other #include statements in your program). This makes all the macros, on which 
the RDL is built, available to your program.  For example:

program t;
#includeOnce( "stdlib.hhf" )
#includeOnce( "rpc.hhf" )

.

.

.
end t;

Note that rpc.hhf automatically includes the sockets.hhf and threads.hhf header files. As noted earlier, this means 
that you will need to supply the -thread command-line parameter when compiling all HLA files in the project. If 
you attempt to compile a source file that includes rpc.hhf without supplying the -thread command-line 
parameter, HLA will emit a warning complaining about its absence.

The RDL uses the following basic syntax (these statements must appear after you’ve included the rpc.hhf 
header file):

remoteProcedures( classNamePrefix )

<< Synchronous, asynchronous, and bisynchronous procedure declarations >>

endRemoteProcedures

The classNamePrefix argument specifies the client and server names. The remoteProcedures statement 
will generate a couple of classes named classNamePrefix_server_t and classNamePrefix_client_t. It 
will also create a couple of instance variables named classNamePrefix_server and 
classNamePrefix_client (note the lack of a "_t" on these instance variable names). These class/objects are 
singletons; that is, there is only one instance variable associated with each class (it doesn’t really make any sense 
to have multiple objects of these classes).  You will sometimes refer to these singleton instance variables (and the 
typenames) within your programs, but most of the time you will not use them; most of the work they do will be 
behind your back.

Within the body of the remoteProcedures..endRemoteProcedures statement are the actual remote 
procedure declarations. These take one of the following three forms:
Page 746 Version: 5/24/10 Written by Randall Hyde



HLA Standard Library Reference
sync( <<procedure declaration>> )
async( <<procedure declaration>> )
bisync( <<procedure declaration>> {:optional_return_type} )

A <<procedure declaration>> looks very similar to an HLA procedure declaration. It takes one of the 
following two forms:

procedureID
procedureID( <<optional parameter list>> )

procedureID is a (unique) HLA identifier that specifies the remote procedure’s name. The <<optional 
parameter list>> item is a list of (pass by value) HLA parameter declarations whose syntax is identical to a 
normal formal parameter list declaration (except only implicit pass by reference is allowed).  Here are some 
examples of legal remote procedure declarations:

sync( proc1 )                                  // No parameters
bisync( proc2( i:int32; j:uns32; k:real32 ) )  // Three arguments
async( proc3( x:string ) )                     // One argument

There are some severe limitations on the types of arguments you can pass to a remote procedure. In 
particular, you can only pass arguments of the following types:

• byte, boolean, char, uns8, int8
• word, uns16, int16
• dword, uns32, int32, real32
• qword, uns64, int64, real64
• tbyte, real80
• lword, cset, uns128, int128
• string
• blob_t  (note: blob.t, blob.blob, and blob.blob_t will not work)

In  particular, note that you cannot pass composite types such as arrays or records. We’ll see how to manually 
pass these types of arguments a little later in this document. You cannot pass pointers or thunks to a remote 
procedure (which wouldn’t make any sense because the remote procedure executes in a different address space). 
Of course, you could cast a pointer or thunk to a dword or qword, but keep in mind that the addresses in the 
remote procedure won’t match those in the local procedure, so doing so will likely result in crashing the system 
or producing weird results.  Remember, all arguments must be passed by value to a remote procedure.

Bisynchronous remote procedures support an optional return result. In the example immediately above, the 
bisynchronous procedure proc2 does not have a return result associated with it. The following examples 
demonstrate some bisync declarations with a return result:

bisync( func1( x:real32 ):real64 )
bisync( rmtFileName:string )
bisync( rmtAppend( s1:string; s2:string ):uns64 )

The set of return types are also limited to the basic types listed earlier.  Again, returning pointers and thunks is a 
no-no and there is no direct support for returning a composite data type. We’ll look at ways to return composite 
data structures later in this document.

Here is a complete remoteProcedures..endRemoteProcedures statement using the declarations given 
thus far::

remoteProcedures( classNamePrefix )

sync( proc1 )
bisync( proc2( i:int32; j:uns32; k:real32 ) )
async( proc3( x:string ) )
bisync( func1( x:real32 ):real64 )
bisync( rmtFileName:string )
bisync( rmtAppend( s1:string; s2:string ):uns64 )
Released to the Public Domain Page 747



HLA Standard Library
endRemoteProcedures

Generally, you’re going to place the remoteProcedures..endRemoteProcedures statement within its own 
header file. For example, the code above might appear as part of the myRPCs.hhf header file:

// myRPCs.hhf:

#ifdef( !@defined( rpc_hhf ))
?rpc_hhf := true;

#includeOnce( "rpc.hhf" )   // May as well do this here

remoteProcedures( classNamePrefix )

sync( proc1 )
bisync( proc2( i:int32; j:uns32; k:real32 ) )
async( proc3( x:string ) )
bisync( func1( x:real32 ):real64 )
bisync( rmtFileName:string )
bisync( rmtAppend( s1:string; s2:string ):uns64 )

endRemoteProcedures

#endif

The reason you’ll want this in a header file is because you have to include this code in two files: in your local 
client program and in the remote server program.

If you stick anything besides a sync, bisync, or async statement between the remoteProcedures and 
endRemoteProcedures clauses, The RDL will ignore those statements and pass them straight through to HLA. 
Because the RDL statements do not directly emit any code, this is equivalent to placing those statements 
immediately before or after the remoteProcedures..endRemoteProcedures statement. Generally, it’s bad 
style to do this; if you have a good reason for wanting to emit some code (or declarations) at that point, you can 
just as easily place them before the remoteProcedures statement.

As just noted, the RDL statements do not directly emit any code. Instead, they (effectively) create two 
header files containing the code they produce. These two header files are named  rpc_client_implementation.hhf 
and rpc_server_implementation.hhf, respectively.3 You should include the rpc_client_implementation.hhf 
header file in the local client code (generally immediately after including the header file containing the RDL 
code) and you should include the rpc_server_implementation.hhf header file in the server source file, e.g.,:

program rpcServer;
#include( "stdlib.hhf" )
#includeOnce( "myRDLcode.hhf" )
#includeOnce( "rpc_server_implementation.hhf" )

.

.

.
<< remainder of RPC server program >>

end rpcServer;

And for the client:

3. Technically, the RDL statements do not create these header files. The RDL statements create two text strings that these
header files expand. You could expand those strings directly rather than including the header files, but there are technical
reasons (dealing with error reporting) for expanding them in these header files.
Page 748 Version: 5/24/10 Written by Randall Hyde



HLA Standard Library Reference
program rpcClient;
#include( "stdlib.hhf" )
#includeOnce( "myRDLcode.hhf" )
#includeOnce( "rpc_client_implementation.hhf" )

.

.

.
<< remainder of RPC client program >>

end rpcClient;

Note that you cannot include both RPC implementation header files in the same source file. This will result in 
duplicate symbol definition errors.

27.4  RPC Preliminaries
The HLA stdlib RPC module works across TCP/IP using the HLA sockets library. This means that you need 

two things in order to establish communication between a local client and a remote procedure server: an IP 
address (of the server) and a pair of unused socket port numbers. It is possible to run the remote procedure server 
on the same machine as the local client (this is actually a very useful configuration for testing purposes), though 
you will typically run the remote server on a separate machine. After all, if you’re always calling the remote 
procedures on the same machine as the local client, it would probably be more efficient to use threads rather than 
remote procedure calls.  The HLA examples download contains an example of an RPC client and server that both 
run on the same machine. They call the sock.hostAdrs function to get the IP address of the machine they are 
running on. In general, however, it is your responsibility to determine the IP address of the machine running the 
RPC server.

Note that the server doesn’t need to be explicitly given the IP address of the client. When the client connects 
with the server, it automatically transmits its own IP address to the server, so the server can use that address to 
connect make the second client/server connection back to the client.

The RPC protocol uses two consecutive socket port numbers. You supply only one port number and the 
RPC code computes the second value by adding 1 to the value you supply. One port is used for communication 
between the local client and the RPC server, the other port number is used for communication between the server 
and the client. Generally, any port number greater than $8000 that doesn’t conflict with other software you’re 
currently running is fine. The example in the HLA examples download uses port number $9998 (and $9999), but 
this value was chosen at random and has no official meaning.

Because the RPC system uses sockets, your client and server programs must initialize the socket subsystem 
by calling the HLA stdlib procedure sock.socketInit. After that, you’re ready to create the client or server 
object and get things running.

27.5  RPC Clients
As noted earlier, the remoteProcedures..endRemoteProcedures statement will automatically 

construct two classes (one for the server module and one for the client module).  You control the name of the 
classes via the argument you supply to remoteProcedures, e.g.,:

remoteProcedures( myRPC )

sync( proc1 )
bisync( proc2( i:int32; j:uns32; k:real32 ) )
async( proc3( x:string ) )
bisync( func1( x:real32 ):real64 )
bisync( rmtFileName:string )
bisync( rmtAppend( s1:string; s2:string ):uns64 )

endRemoteProcedures

This declaration, in the client file (that includes rpc_client_implementation.hhf), creates a class named 
myRPC_client_t.  It also creates the VMT for that class and a single static object instance of that class 
named myRPC_client.  Like any statically allocated class object, you’ll need to initialize that object before you 
use it. You accomplish this by calling the myRPC_client.create constructor for the class.  This constructor 
has two arguments: the IP address of the remote server and the port number (first of two) that the server will be 
listening on for the client.
Released to the Public Domain Page 749



HLA Standard Library
The constructor actually does a lot more than simply initialize the class object. It actually connects to the 
server. It will not return until a connection is made with the server process. Upon return from the constructor, 
you’re ready to make some remote procedure calls. Here is a typical invocation of the constructor:

myRPC_client.create( ipAdrs, $9998 );
stdout.put( "Connected to RPC server" nl );

When you compile the RDL statements (in the myRDLcode.hhf  file in the earlier examples), the RDL 
compiler generates a considerable amount of code and places it in the rpc_client_implementation.hhf 
header file. For all remote procedure types, the RDL compiler will generate a local proxy function that has the 
same name and calling sequence as your declared remote procedures. For the current example, you wind up with 
procedure prototypes like the following:

procedure proc1; external;
procedure proc2( i:int32; j:uns32; k:real32 ); external;
procedure proc3( x:string );
procedure func1( x:real32 ); external;
procedure rmtFileName; external;
procedure rmtAppend( s1:string; s2:string ); external;

The RDL compiler actually writes the code for these functions (you compile this code into your client program 
by including the rpc_client_implementation.hhf header file). These proxy functions collect (marshall up) any 
arguments and send a packet to the remote server identifying the procedure to run and supplying the arguments 
for that call.

On the client side, once you’ve initialized the myRPC_client object, you’re free to call these procedures 
just as though they were local procedures.

For synchronous and asynchronous remote procedures (proc1 and proc3 in this example), that’s all there is 
to it. You call the proxy procedure and the code executes on the remote server. For synchronous procedures (e.g., 
proc1), the call doesn’t return until the code completes execution on the server (and the server notifies the client 
of the completion). For asynchronous procedure calls (e.g., proc3), the call returns immediately after the proxy 
procedure marshalls the arguments and ships them off to the remote server; asynchronous calls to not wait for the 
completion of the code on the remote server.

Note that the RDL compiler will create an additional client-side procedure in addition to the proxy functions 
for synchronous procedures. This procedure will have the same base name as the proxy procedure with 
"_return" appended to the name (e.g., proc1_return in the current example). This procedure is for internal 
use only. You must never call this procedure; doing so may make the system unreliable. Note that the RDL 
compiler does not generate any extra procedures for asynchronous procedure declarations. On the client, the 
proxy function is the only code the RDL compiler generates for an asynchronous procedure.

Bisynchronous procedures are considerably more complex than synchronous or asynchronous procedures. 
Like asynchronous and synchronous procedures, the RDL compiler will emit a proxy function that marshalls all 
the arguments and ships them over to the remote server for execution. Like asynchronous procedures, this proxy 
function will immediately return after it transmits the arguments to the remote server; it will not wait for the 
completion of the remote procedure call. Like synchronous procedures, the RDL compiler will create a 
"_return" procedure (which you must never call) that the server remotely invokes on the client when the 
remote procedure completes execution.

The RDL compiler generates one additional client-side function for bisynchronous procedures: a 
"_waitForReturn" function (that has the proxy name prepended to it, e.g., func1_waitForReturn). The 
"_waitForReturn" procedure serves two purposes: it delays the client program until the remote procedure 
completes execution and it provides a mechanism for retrieving a bisynchronous function return result. 

Unlike the "_return" function, a client-side application must call the "_waitForReturn" function at 
some point after calling the proxy function. This is absolutely required! If you fail to call the corresponding 
"_waitForReturn" function after a bisynchronous procedure call, you will deadlock (hang) the system if 
you make a second call to that same proxy function. Calling the proxy function enters a critical section 
associated with the remote procedure and calling the corresponding "_waitForReturn" function leaves that 
critical section. If you attempt to call the proxy function twice without an intervening "_waitForReturn" call, 
you will attempt to reenter the critical section (in the same thread) and this may produce deadlock.  Moral of the 
story, always be careful when using bisynchronous procedures and ensure that you call the "_waitForReturn" 
procedure as quickly as is reasonable.

Bisynchronous procedures are quite useful for continuing to do some work while you’re waiting for the 
remote procedure to finish execution (and, generally the slower activity, waiting for the client and server to 
communicate the call and its completion between themselves). You can call a bisynchronous procedure, do some 
Page 750 Version: 5/24/10 Written by Randall Hyde



HLA Standard Library Reference
work (that doesn’t depend on the completion of that procedure), and then call the "_waitForReturn" procedure 
when you need to synchronize the execution of the local client code with the remote server.

Another reason for bisynchronous procedure calls is to return function results from a remote procedure. If 
you specify a return type when declaring a bisynchronous procedure, e.g.,:

bisync( func1( x:real32 ):real64 )

Then the RDL compiler will generate a func1_waitForReturn procedure with the following prototype:

procedure func1_waitForReturn( var rtn:real64 );

Note that this has a single pass-by-reference argument whose type is the same as the bisync return type. Calling 
such a typed "_waitForReturn" function will store the remote function’s return result in the variable you pass 
as the procedure’s parameter.

String and blob_t types are special cases.  Consider the rmtFileName function from the earlier examples and 
its "_waitForReturn" function:

bisync( rmtFileName:string )

// Return function prototype:

rmtFileName_waitForReturn( var rtn:string );

The client-side remote procedure code automatically allocates storage for a string (or blob) result on the 
heap and stores a pointer to that new string (or blob) in the variable you pass to 
rmtfileName_waitForReturn. This function does not store the string or blob data in the object you pass; 
it overwrites the  variable’s data pointer with the pointer to the new string or blob on the heap.

These semantics have two ramifications in your program. First of all, if the string  variable you pass to 
rmtFileName_waitForReturn already points at a string on the heap and you do not have another copy of that 
pointer laying around, then you will have a memory leak upon return from rmtFileName_waitForReturn 
when the original pointer is overwritten by the new one. Second, because the remote procedure call system 
allocates the storage for the return string on the heap, it is your responsibility to free this storage when you are 
done using the string (by calling str.free for strings or blob.free for blobs).

When you are done using the remote procedure server, you can shut down the connection by calling the 
destructor for the client class object. For example, if you’re using the name myRPC (as in the earlier examples that 
described the constructor), you can shut down the system with the following call:

myRPC.destroy();

Generally, it’s a good idea to wait a second or two after calling the destructor to give the remote system time 
to shut down before you kill the socket connection (this is optional, it’s not strictly required). You can do this 
with an HLA stdlib call such as os.sleep(1);

27.6  RPC Servers
The server side of a remote procedure call client/server pair is slightly more complicated than the client side. 

This is largely because in addition to initializing (and destroying) the server object, you’ve actually got to supply 
the remote procedures that the client will be calling. As on the client side, synchronous and asynchronous 
procedures are fairly easy to understand -- they look and behave much like local procedures; bisynchronous 
procedures, on the other hand, introduce some additional complexities because of return results and their 
bisynchronous nature.

Like the client side, the first thing you’ll find of interest in a remote procedure server program is the 
inclusion of the RDL source code and the associated implementation file. Continuing the example from the 
previous system, here’s a reminder of what the basic program file will look like:

program rpcServer;
#include( "stdlib.hhf" )
#includeOnce( "myRDLcode.hhf" )
#includeOnce( "rpc_server_implementation.hhf" )

.

Released to the Public Domain Page 751



HLA Standard Library
.

.
<< remainder of RPC server program >>

end rpcServer;

The structure of the main program is going to be somewhat different from the client. This is because the 
server exists primarily to provide remote procedure call services to the client. The client, on the other hand, exists 
to solve some application problems and remote procedure calls might only be a tiny part of the work that takes 
place on the client. On the server, however, the work revolves totally around providing that remote procedure 
call service.4   A typical main program in an RPC server will consist of two calls: one call to the server’s class 
constructor and one call to its destructor.

When you compile the RDL code (i.e., the remoteProcedures..endRemoteProcedures statement), the 
RDL compiler generates a class and an object instance variable specifically for the server application. Assuming 
you’ve specified the name myRPC in the remoteProcedures statement, the class name will be myRPC_server_t 
and the object instance will be myRPC_server.  The constructor for this new class has the following calling 
syntax:

myRPC_server.create
(

basePortNumber,
&serverConnectedProcedure,
timeoutThunk

);

The basePortNumber argument is the port number (first of two). This must match the value you use on the 
client side. Remember that the RPC server and client use two consecutive port numbers. So if you specify $9998 
as the port number, the system will actually use ports $9998 and $9999.

The serverConnectedProcedure argument is the name of a parameterless procedure that the RPC server 
will call when the client successfully connects when the server and the server, in turn, successfully connects with 
the acknowledgement server on the client side. There is one requirement for this procedure: it must call the 
"connected" method of the "*_server_t" class created by the RDL compiler. Assuming the use of the myRPC 
argument to remoteProcedures, here’s what the minimal serverConnectedProcedure will look like:

procedure serverConnectedProcedure;
begin serverConnectedProcedure;

myRPC_server.connected();

end serverConnectedProcedure;

Though this is the minimal amount of work this procedure should do, there are some minor embellishments 
that are useful. Here is a typical example (taken from the RPC example in the HLA examples download):

static
quitServer :boolean;

procedure serverConnected;
begin serverConnected;

stdout.put( "Client connected with server" nl );

// Start the real server code:

myRPC_server.connected();

4. Technically, there is no reason you couldn’t start up a thread in the server program and run the remote procedure call
server in that thread while the main thread does other work, but generally your system will be more robust if you limit the
activities of the remote procedure call server to just handling remote procedure calls. 
Page 752 Version: 5/24/10 Written by Randall Hyde



HLA Standard Library Reference
stdout.put( "Client disconnected from server" nl );
mov( true, quitServer );

end serverConnected;

Printing "Client connected with server" and "Client disconnected from server" are obvious modifications 
(note that when myRPC_server.connected returns, the client and server have disconnected). The reason for 
setting the global variable quitServer to true will become apparent in a few moments.

The last argument to the server class constructor is a "timeout thunk." If you’re unfamiliar with thunks, just 
note that they are a fancy form of a procedure that you can declare in-line in some other code. The cool thing 
about thunk parameters (as opposed to procedures you pass by address as a parameter) is that you can encoded 
the thunk statements in-line in the argument list of a procedure call.

The constructor calls the timeoutThunk on a periodic basis (the interval is set by the thunk itself). On entry 
into the server’s constructor thunk, EAX points at an hla.timeval variable that the thunk can use to change the 
timeout period. On return, EAX contains false if the constructor is to continue waiting for the server to connect, 
EAX should contain true if a timeout has occurred and you want to return from the constructor without 
connecting. Here’s a typical constructor call with an in-line thunk:

mov( false, quitServer );
myRPC_server.create
( 

$9998, 
&serverConnected,
thunk
#{

// On entry to thunk, EAX contains the address of the timeout
// variable. Set this as desired for the timeout (0.1 second,
// in this case).

if( eax <> NULL ) then

// Timeout is 0.1 seconds while waiting for
// connection:

mov( 100_000, (type hla.timeval [eax]).tv_usec ); 

endif;
       movzx( quitServer, eax );

}#
);

Notice that this thunk returns the value of quitServer in EAX. Because this code sequence also initializes 
quitServer with false (and no other code in the thunk ever sets it to true), this code will never time out. The 
myRPC constructor will continually call this thunk at 0.1 second (100,000 microsecond) intervals until it connects 
with a client.

When the client calls its destructor, the client sends a message to the server telling it to disconnect. 
Whenever a client disconnects from the server, the server reenters the loop waiting for another client to connect 
with it. However, if you look back at the serverConnected code given earlier, it sets the quitServer global 
variable to true, so the first time the constructor reenters the thunk, the thunk returns true in EAX and the server 
quits execution.

Upon returning from the constructor, it’s a good idea for the server to delay a couple of seconds before 
calling the class destructor method (myRPC_server.destroy) and quitting the program:

// Short delay to allow all transmissions to complete before we bail:

os.sleep( 2 );

my_server.destroy();
Released to the Public Domain Page 753



HLA Standard Library
All that remains in the server module is to write the actual remote procedures that the client will call. As for 
the client side, asynchronous and sychronous procedures are relatively straight-forward and look just like local 
procedure calls.  For example:

procedure proc1;
begin proc1;

stdout.put( "Client called synchronous procedure proc1" nl );

end proc1;

procedure proc3( x:string );
begin proc3;

stdout.put( "Client called asynchronous procedure proc3, x=", x, nl );
str.free( x );

end proc3;

This is relatively straight-forward stuff. About this only issue of which you must be aware (and proc3 
demonstrates) is that when you pass string values as parameters, the RPC code allocates storage for the string 
object on the heap and it is your responsibility to free that storage when you are done using the string’s data.

Behind your back, the RDL compiler generates some additional functions for all procedures (synchronous, 
asynchronous, and bisynchronous). These procedures have the same name as the primary procedure with the 
addition of a "_marshall" suffix. The marshall procedures read the arguments  (if any) from the network, save 
them into local variables, and then call the actual user-written procedure with these arguments.  It should go 
without saying that user-written code should never call these marshalling procedures; the marshalling procedures 
expect data coming across the network and they must only be called from the RPC server in response to an RPC 
request from the client.

As on the client side, bisynchronous procedures are slightly more complex than asynchronous and 
synchronous procedures.  Let’s first consider the proc2 example from earlier in this document:

bisync( proc2( i:int32; j:uns32; k:real32 ) )

Here is a simple implementation of proc2:

procedure proc2( i:int32; j:uns32; k:real32 );
begin proc2;

stdout.put( "proc2 was called, i=", i, ", j=", j, ", k=", k, nl );
proc2_return();

end proc2;

The important thing to notice in this code is the call to the proc2_return procedure. This is an RPC 
compiler generated procedure that notifies the client when the procedure is done executing. Generally, you must 
call this procedure at the end of a bisynchronous procedure (that’s the logical place to call this procedure, though 
there is nothing stopping you from calling it earlier if you have a good reason to do so). You must call this 
function exactly once in every bisynchronous procedure. If you don’t call it, the client will hang up waiting 
for the bisynchronous procedure call to finish when it calls the corresponding proc2_waitForReturn function.

Now consider an example of a bisynchronous remote procedure that has a function return result:

// bisync( rmtFileName:string )

procedure rmtFileName;
begin rmtFileName;

// Code to compute the filename and produce the string
// value "fileName"
Page 754 Version: 5/24/10 Written by Randall Hyde



HLA Standard Library Reference
rmtFileName_return( fileName );

end rmtFileName;

Whenever a bisynchronous procedure returns a function result, the corresponding "*_return" function will 
require a single (pass by value) parameter whose type matches the return type.  Note that the return funciton will 
completely transmit the data before it returns. Therefore, you are free to destroy the object (e.g., free the storage 
associated with the fileName string variable) upon return from the return function.

27.7  Passing Large Objects Between the Client and Server
The existing RDL does not support passing composite data types (other than strings and blobs) to and from 

remote procedures. In this section you’ll see how to overcome this limitation. You can pass large data types 
between a client and server, however, you’ll have to manually pass that data yourself rather than relying on RDL 
compiler generated code to do the job for you.

The RPC2 project in the HLA examples download (which will be reproduced here) demonstrates how to 
pass large chunks of data between a client and an RPC server. Passing a large data structure to the RPC server is 
the easiest to understand, so we’ll start with that explanation. 

There are two ways to pass large chunks of data: using explicit networking calls or moving the data to a blob 
and transmitting the blob. We’ll start with a discussion of using explicit networking calls.

Although the RPC protocol passes fixed amounts of data between the client and the server, this protocol is 
built on top of the HLA sockets library, that allows you to transmit an arbitrary amount of data from one network 
node to another. Inside the classes that the RDL constructs are two HLA socket objects: a client_t object and 
a server_t object, named client and server, respectively. As long as you are careful, you can use these 
client and server objects to communicate data from the client application to the RPC server application.

Before discussing how to pass a block of data from the client to the server using explicit networking calls, an 
important warning is worth mentioning: the RPC server process has a very strict data transmission and receipt 
protocol. You will be injecting bytes into the (client) transmission stream and intercepting bytes in the (client) 
reception stream. The code you write on the server and client sides to handing these extra bytes must transmit 
and receive the exact number of bytes your code on the other side of the network is expecting. The HLA stdlib 
RPC module is not fault tolerant with respect to recovering from a protocol mish-mash (TCP/IP guarantees 
correct delivery, it doesn’t make sense to replicate the error checking in the RPC code).  If you transmit M bytes 
to the server but your code on the server only reads (M-N) of those bytes (or attempts to read M+N bytes), then 
the RPC protocol will be out of sync and unexpected results (usually a crash) will happen shortly thereafter. 
Moral of the story: if you transmit M extra bytes from one network node to the other, make sure the other reads 
those M bytes (and no more).

If you want to transmit a large block of bytes from the client to the RPC server using explicit networking 
calls, the first thing you’re going to need to do is to create a bisynchronous procedure to handle the transmission. 
This has to be a bisynchronous procedure. The reason for a bisynchronous procedure is because the code you 
write on the server side will need to read the extra bytes you send it before the RPC server attempts to read 
another command from the network socket.  Bisynchronous procedures give your application complete control 
over this process on the server as well as complete control over the acknowledgement receipt on the client side.  
Synchronous procedures won’t work because the client-side call will wait for an acknowledgement before you 
get control back (so you won’t be able to send the array data until after the server has acknowledged the call and 
has already started waiting for a new command). Asynchronous procedures could work, but it’s easier to mess up 
the RPC protocol with asynchronous procedures, so bisynchronous procedures make a better choice.

The first place to start is with the data structure you want to pass from the client to the server. Generally, it’s 
a very good idea to place a type definition for this data type in the same header file that contains your RDL code 
(that is, the remoteProcedures..endRemoteProcedures statement). For this section’s example, we’re 
going to pass a dword array with 16 elements (that is, a 64-byte object). Here’s the data type declaration that 
appears in the sc.hhf header file in the RPC2 example:

type
array_t :uns32[16];

By convention (a convention I’m creating as I write this, as this is the first example of this process ever 
written), the remote procedure on the RPC server will expect a single dword parameter that will hold the size of 
the object. Technically, no such parameter is necessary because the data type (array_t in this example) is 
visible on both the client and server sides and both sides can easily compute the size of the object using the 
@size( array_t ) compile-time language function invocation. However, by explicitly passing the size, you 
Released to the Public Domain Page 755



HLA Standard Library
can run a consistency check on the server side just to verify that there aren’t any problems. Here’s what a typical 
RDL statement for a procedure with a large array argument might look like:

bisync( passBig( size:dword )   )

On the client side, you’re going to need to write a separate function (separate from the one the RDL 
compiler generates for passBig) that you can use to pass the array to the server.  This new procedure will call 
passBig to get the server side process running and then it will transmit the array data to the server before 
waiting for the server to return an acknowledgement.  In the RPC2 example, I’ve called this procedure 
passArray. Here is the code for passArray:

procedure passArray( var a:array_t );
var
    b:blob_t;
begin passArray;

    push( esi );
    push( edi );
    
    passBig( @size( array_t ));
    lea( esi, myRPC_client.client );
    (type client_t [esi]).write( val a, @size( array_t ));
    passBig_waitForReturn();
    
    pop( edi );
    pop( esi );
     
end passArray;

The call to passBig in this procedure kicks off the data transmission process. The passBig procedure on 
the server side will accept the size argument and then the user-written code in that procedure will wait for the 
arrival of the data. When the server receives all the data, it will send an acknowledgement back and the 
passwBig_waitForReturn function will return and the client will continue execution.

Upon entry into the passBig procedure on the server, we’ve already received the size parameter value and 
the client has probably sent the bulk data on its way as well. Therefore, one of the first things we’ve got to do is 
to read that block of data from the network socket. Once we’ve read all the network data, we have to call the 
passBig_return procedure to send an acknowledgement to the client that the procedure is done executing.  
Here’s the complete code for the passBig procedure:

procedure passBig( size:uns32 );
var
    anArray :array_t;
    
begin passBig;

    assert( size = @size( array_t ));
    lea( esi, myRPC_server.server );
    (type server_t [esi]).read( anArray, @size( array_t ));
    stdout.put( "Received anArray:" nl );
    for( mov( 0, ecx ); ecx < @elements( array_t ); inc( ecx )) do
    
        stdout.put( "anArray[", (type uns32 ecx), "]=", anArray[ecx*4], nl );
        
    endfor;
    passBig_return();
    
end passBig;

Notice how the call to passBig_return occurs after we’ve read all the data from the client.
Page 756 Version: 5/24/10 Written by Randall Hyde



HLA Standard Library Reference
The second way, and arguably the standard way, to pass a large data type from the client to the RPC server 
is by passing a blob_t argument. On the client side, you would create a blob_t object, store the large data 
object into the blob, and then remotely call the desired procedure passing the blob argument.

Before demonstrating how this is done, you should be aware of an important fact: if you intend to pass a 
blob object between the client and the server you must use the blob_t data type because the RDL compiler 
recognizes only this blob type. Although blob.t, blob.blob_t, and blob.blob are usually synonyms for 
blob_t, the RDL compiler doesn’ recognize these synonyms (for syntactical reasons).

One advantage of passing large data types as blobs is that you can create syncrhonous, bisynchronous, and 
asynchronous remote procedures without any trouble.  In this example, we’ll use a synchronous procedure 
declaration. From the sc.hhf header file (in the RPC2 project in the HLA examples downloads) you’ll find the 
following RDL declaration for the passBigb procedure:

sync( passBigb( b:blob_t ) )

In the client source file, you’ll need to write a procedure that will collect your large object’s data together 
and place that information into a blob (assuming the large object isn’t a blob to begin with).  Then you will call 
the remote procedure and pass that blob as an argument. When you’re done with the blob you’ve created, you 
will typically free its storage before returning. Here’s the implementation of passArray2 from the RPC2 
project:

procedure passArray2( var a:array_t );
var
    b:blob_t;
begin passArray2;

    blob.alloc( @size( array_t ));
    mov( eax, b );
    blob.write( b, val a, @size( array_t ));
    passBigb( b );
    blob.free( b );
     
end passArray2;

First, this code allocates a blob object large enough to hold the data object to pass to the remote procedure. 
Then it writes the data (from the array in this example) to the blob. Then it calls passBigb to pass the array data, 
encapsulated in the blob, over to the server. Finally, it deletes the storage associated with the blob.

On the server side, the passBigb procedure receives the blob data via a blob -typed parameter. This 
procedure simply has to read the data out of the blob and place it in the local array data object. Whenever you 
pass a blob object to a remote procedure, that remote procedure is required to free the storage associated with that 
blob (same as the situation for strings). Here’s the server side code from the RPC2 example that demonstrates 
this activity:

procedure passBigb( b:blob_t );
var
    bArray  :array_t;
    
begin passBigb;

    blob.length( b );
    assert( eax = @size(array_t) );
    
    lea( eax, bArray);
    blob.read( b, [eax], @size( array_t ));
    stdout.put( nl "Received bArray:" nl );
    for( mov( 0, ecx ); ecx < @elements( array_t ); inc( ecx )) do
    
        stdout.put( "bArray[", (type uns32 ecx), "]=", bArray[ecx*4], nl );
        
    endfor;
Released to the Public Domain Page 757



HLA Standard Library
    blob.free( b );
    
end passBigb;

To return a large data object as a function result there is only one mechanism available: pack the data into a 
blob_t object and return that blob to the client (and unpack the blob when the client receives it).  As is the case 
for all remote procedure that return a value, you must use a bisynchronous procedure to achieve this. Here’s the 
RDL declaration from the RPC2 example program for a rtnBig procedure that returns a 16-element array 
object:

bisync( rtnBig:blob_t )

On the server side, you’ve got to create a blob, move the large data object into the blob, return the blob as the 
remote function result, and then free up the blob you’ve created. Here’s the same code from the RPC2 server.hla 
source file:

procedure rtnBig;
var
    b:blob_t;
    a:array_t;
    
begin rtnBig;

    // Create an array to return:
    
    mov( @elements( array_t ), eax );
    for( mov( 0, ecx ); ecx < @elements( array_t ); inc( ecx )) do
    
        mov( eax, a[ecx*4] );
        dec( eax );
        
    endfor;
    
    // Copy the array into a blob:
    
    blob.alloc( @size( array_t ));
    mov( eax, b );
    blob.write( b, a, @size( array_t ));
    
    // Return the array:
    
    rtnBig_return( b );
    
    // Free the blob:
    
    blob.free( b );
    
end rtnBig;

On the client side, after receiving the blob (which the RPC library module has already allocated storage on 
the stack for), you’ve got to unpack the blob data into the desired data structure and then free the storage 
associated with the blob. Here’s the client code to achieve this:

procedure returnArray( var a:array_t );
var
    b:blob_t;
    
begin returnArray;
Page 758 Version: 5/24/10 Written by Randall Hyde



HLA Standard Library Reference
    rtnBig();
    rtnBig_waitForReturn( b );
    blob.read( b, val a, @size( array_t ));
    blob.free( b );
    
end returnArray;
Released to the Public Domain Page 759



HLA Standard Library
Page 760 Version: 5/24/10 Written by Randall Hyde


	27 RPC: The Remote Procedure Calls Library
	27.1 Types of Remote Procedures
	27.2 Remote Procedure Call (RPC) Protocol
	27.3 The RPC Declaration Language (RDL)
	27.4 RPC Preliminaries
	27.5 RPC Clients
	27.6 RPC Servers
	27.7 Passing Large Objects Between the Client and Server


