
HLA Standard Library Reference
18 HOWL: The HLA Object Windows Library

The HLA Object Windows Library (HOWL) is an application framework for Microsoft Windows that
greatly simplifies GUI application development for Windows in assembly language. It lets you declare forms and
widgets that describe the visual layout of a GUI application and then you need only write small procedures that
handle events associated with your GUI elements. This is far less work than writing a standard Win32
application and processing all the messages that Windows sends to such an application.

Once you master the basics of HOWL, you can write the GUI portion of a Win32 application in a fraction of
the time it would take using standard Win32 API programming techniques. Your programs will be easier to read
and easier to maintain, as well.

As its name suggests, the HLA Object Windows Library makes extensive use of HLA’s object-oriented
programming facilities. If you are unfamiliar with object-oriented programming, or are uncomfortable with
HLA’s implementation of object-oriented programming, you should take a look at the chapter on “Classes and
Objects” in The Art of Assembly Language and the chapter on Object-Oriented Programming in the HLA
reference manual.

Note: Successful use of HOWL requires HLA v2.8 or later. If you have an earlier version, you will need to
upgrade to the latest version in order to use HOWL. It should be obvious by now, but HOWL for Windows only
supports Microsoft Windows (2000, XP, Vista, and Windows 7; no guarantees on earlier versions).

18.1 The HOWL Application Framework
Most HLA programs (at least to date) are written with a “main program” that controls the activities of that

application by calling various procedures and other code within the application; the main program is the “traffic
cop” that determines what happens and the sequence of those operations. An application framework (like
HOWL), on the other hand, contains its own “main program” that controls the sequence of operations within the
program. As an application programmer, you will supply various procedures that the framework will call and
your procedures will handle various tasks as requested by the application framework’s main program. This
paradigm takes a small amount of effort to get used to if you’ve never written event-driven applications before,
but it’s fairly easy to master and you should be able to master it in a few short hours.

For technical reasons, your HOWL applications will still be written as an HLA program. However, the
main program for your HOWL application is trivial; if your program is named “howlDemo”, then this is what
your main program will look like:

begin howlDemo;

HowlMainApp();

end howlDemo;

HowlMainApp is the HOWL application framework main program that you must call from your main
program to get the application running.1

Beyond the main program in your HOWL application, there are two methods and three procedures you must
also supply:

• An “onClose” method (usually containing a single statement)
• An “onCreate” method (usually empty)
• An “AppStart” procedure
• An “AppTerminate” procedure
• An “AppException” procedure

Your application will normally contain many more procedures and other code, of course, but every HOWL
application will have at least these five procedures and methods.

The first step in creating a HOWL application is to create a subclass of the wForm_t type. You could create
such a new class using a declaration like the following:

1. In theory, the HOWL framework could require that you create a unit and the HOWL main program could have been
linked in automatically. However, you cannot insert any main programs into the HLA Standard Library (where HOWL
resides) without creating linkage problems for all other applications. The simple alternative is to require HOWL apps to call
the HowlMainApp procedure from their main program.
Released to the Public Domain Page 485

HLA Standard Library
myNewForm_t:
class inherits(wForm_t);

<< any new fields you want to add >>
endclass;

However, in an typical HOWL application you won’t create a new wForm_t type this way. Instead, you’ll
use the wForm..endwForm declaration to achieve this:

wForm(myForm)
<< any new fields you want to add >>
<< any widget declarations you want >>

endwForm

The wForm..endwForm statement does several things for you:
• It defines a new class type that is a subclass of wForm_t. This new class type is given the name

“myForm_t” (substituting whatever name you supply as the argument to wForm for “myForm”
in this example).

• It creates a static global variable named “pformname” (substituting the name you supply in the
wForm invocation for formname) that is a pointer to an object of type formname_t (again,
substituting the name you supply in the invocation to wForm for formname).

• It creates a static global variable named “formname” (usual substitution) that is an instance of
the class object formname_t.

• It initializes “pformname” with the address of the global “formname” variable.
• It creates a macro, named formname_implementation, that you can invoke to create a

constructor for this new class that initializes all the widgets you declare in the
wForm..endwForm statement.

You could manually do all of these things that the wForm..endwForm declaration does for you, but it’s a lot
easier and less error prone to to use the wForm..endwForm statement. So this documentation will only consider
that approach. If you’re interested in learning how to manually create new wForm_t subclass types, take a look
at the macro implementation of wForm..endwForm in the howl.hhf header file.

In order to provide concrete examples, this documentation will assume that you’re supplying the name
“myForm” as an argument to the wForm..endwForm macro invocation. Please keep in mind that you can use
any name you choose (and “myForm” is not a particularly descriptive or good name) in these examples. In
general, you might want to consider using your application’s name (if you’re not already using that as an
identifier elsewhere in your program) as the main form name.

With the basic description wForm out of the way, we can now take a look at a complete HOWL application
(the generic equivalent of a “hello world” application in the GUI world). The following code appears in pieces in
order to explain the purpoes of each piece.

program howlDemo;
#linker("comdlg32.lib")
#linker("comctl32.lib")

The HOWL library makes use of the Windows common controls and common dialogs dynamically linked
libraries. The two #linker statements above instruct HLA to emit instructions to the linker to link in these
libraries (so you don’t have to specify these library names on the HLA compiler command line).

?@NoDisplay := true;
?@NoStackAlign := true;

By default, HLA emits code to generate displays for all procedures and it also emits code to align the stack
at the beginning of each procedure. These options are rarely needed in HOWL programming, so it’s a good idea
to include the two statements above in order to turn off the code generation for these two features.

#includeOnce("stdlib.hhf")
#includeOnce("howl.hhf")

Like most HLA applications, we’ll include the HLA standard library generic header file (stdlib.hhf) so we
can take advantage of most of the standard library’s features. Because stdlib.hhf doesn’t automatically include
the howl.hhf header file, the code needs to explicitly include this header file as well in order to use HOWL
features.
Page 486 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
static
 align(4);
 bkgBrush_g :dword;
 bkgColor_g :dword;

The bkgBrush_g and bkgColor_g variables will hold the background color and brush for our forms. We
need to declare these variables before our form declaration because many widgets (controls) will need a
background color and the widgets will look better if their background color is the same as the form’s.

wForm(myForm)
endwForm

Here’s our wForm declaration. It is important for you to understand that the wForm..endwForm declaration
is equivalent to a class declaration in the type section of an HLA program. The wForm macro, in fact, expands
in-place) to a type section with a class declaration for myForm_t. There are two things you can place between the
wForm and endwForm clauses: class field declarations and invocations of certain context-free macros defined by
the wForm macro invocation. We’ll take a look at both of these options a little later, for the current example our
wForm..endwForm macro invocation is empty because we’re just creating an empty formfor our application.
Note, and this is very important, that the wForm..endwForm statement must appear at some point in your
program where it is legal to begin a type section that defines a class (because this is exactly what
wForm..endwForm is going to do).

// Implement the mainAppWindow create procedure and object instances:

myForm_implementation();

One of the tasks that the wForm..endwForm macro invocation accomplishes is the creation of a macro
(named myForm_implementation in this example) that will expand to some code that the wForm..endwForm
macro generates. Somewhere in your program you must invoke this macro (myForm_implementation) in
order to actually emit the code that the new class you’ve created requires. If you’re wondering why the
wForm..endwForm macro doesn’t emit this code directly, just keep in mind that the wForm..endwForm
declaration often appears in a header file (rather than directly in your main program as it appears here) and if
wForm..endwForm automatically emitted this code, it would be emitted in every file that included the header
file. This would result in duplicate code (and duplicate external labels). Therefore, the wForm..endwForm
statement generates this macro that you must invoke exactly once in your program in order to compile the code
that wForm..endwForm generates.

method myForm_t.onCreate;
begin onCreate;
end onCreate;

method myForm_t.onClose;
begin onClose;

 w.PostQuitMessage(0);

end onClose;

 The myForm_t class that wForm..endwForm creates will define two methods but it will not generate
the code for these methods, you will have to provide the code for these methods. Most of the time, these
methods will appear exactly as the two above. The HOWL main program invokes the onCreate method at the
very end of the execution of the constructor procedure for the myForm_t class. You could put code in this
method to execute immediately after the creation of the new form but, as you’ll soon see, you’ll most often put
this “on creation” code in the appStart procedure. So most of the time the onCreate method will be empty.
Why does HOWL generate a call to a method you’ll almost always leave empty? Well, this is an artifact of
object-oriented programming. The onCreate method is quite useful for other classes that are derived from
myForm_t’s parent class, so rather than make a special case out of myForm_t (or the other classes), HOWL
requires you to write this (usually empty) method and it will call it. Fortunately, this only takes a few bytes of
memory and it only gets called once, so there really isn’t an efficiency loss for doing this.
Released to the Public Domain Page 487

HLA Standard Library
When the user of your application clicks on the form’s close button, or otherwise tells the application to
terminate, HOWL will direct control to the myForm_t.onClose method. You can do other things to clean up
your application when the program is about to quit, but the main thing you need to do is to tell Windows that the
application is quitting and this is done by executing w.PostQuitMessage(0); As it turns out, you generally
won’t put any application cleanup code directly in the onClose method; there is an appTerminate procedure
that HOWL will call when your program terminates execution and you’ll put all your cleanup code in that
procedure.

We’ve talked about the appStart and appTerminate procedures, let’s take a look at them. A typical
appStart procedure takes the following form:

procedure appStart;
begin appStart;

 push(esi);

 // Create the main application window:

 w.GetSysColor(w.COLOR_MENU);
 mov(eax, bkgColor_g);
 w.CreateSolidBrush(eax);
 mov(eax, bkgBrush_g);

The above statements initialize the bkgColor_g and bkgBrush_g global variables with the color (and
corresponding solid brush) of the menu area on a typical Windows’ window. Though it’s not strictly necessary
to have these global variables, they are useful when creating widgets in more complex applications, so most
appStart procedures will initialize these variables. Note that you must initialize these variables before calling
the constructor for the myForm_t class because the widget declarations appearing in the wForm..endwForm
statement will be initialized in the call to the constructor for myForm. Note that you don’t have to specify the
w.COLOR_MENU background color. You can specify any RGB color you like. You can use the RGB macro (e.g.,
RGB(255, 128, 0)) to specify the individual red, green, and blue (respectively) components of the RGB color.

The wForm(mForm) .. endwForm statement appearing earlier in the source file (and the
myForm_implementation macro invocation) automatically generated a constructor for the myForm_t class
named create_myForm. That declaration also created an instance variable (an object) of type myForm_t
named myForm. In order to initialize and display the form, you must call this constructor with the following (or
reasonably compatible) arguments:

 myForm.create_myForm
 (
 "My Form", // Window title
 0, // Extended style
 0, // Style
 NULL, // No parent window
 w.CW_USEDEFAULT, // x-position on screen
 w.CW_USEDEFAULT, // y-position on screen
 600, // Width
 600, // Height
 bkgColor_g, // Background color
 true // Make visible on creation
);
 mov(esi, pmyForm); // Save pointer to main window object.

The first argument is a string parameter that HOWL will display in the title bar of the application’s main
form. You can put any string you like here, although you should generally put the program’s name in the title
bar.

The next two parameters let you extend the window style and extended style. In general, this two
parameters will contain zero. HOWL always uses the style (w.WS_CLIPCHILDREN |
w.WS_OVERLAPPEDWINDOW) and the extended style w.WS_EX_CONTROLPARENT when creating windows for a
HOWL form. The styles you specify in the second and third constructor arguments will be logically ORed into
HOWL’s existing styles.
Page 488 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
The fourth parameter is the handle of the form’s parent form. For main application windows, this argument
is always NULL.

The fifth and sixth arguments in the constructor invocation are the x- and y-coordinates on the screen where
Windows will position the upper-left-hand corner of the form. You may specify any reasonable values here
(within the range of the size of your screen, if you want the form to be visible) or you can specify
w.CW_USEDEFAULT, in which case Windows will position the window automatically for you. For the position
on the screen, the default coordinates are probably good values to use.

The seventh and eighth arguments are the width and height of the window you’re creating. You’ll have to
pick these numbers based on the layout of the widgets on your form. You can also specify w.CW_USEDEFAULT
for the width and height and Windows will pick values it feels are appropriate. Generally, though, you’ll want to
explicitly specify the width and height for a typical form.

The ninth parameter is the background color to use for the main client area of the form. This is an RGB
color value. As this example demonstrates, it’s a good idea to u se the bkgColor_g value in this parameter
argument so you can specify that same value (or bkgBrush_g) for other elements on the display that have a
background color.

 // Return main window handle in EAX if you want the system
 // to support control selection via the TAB key. Return
 // NULL in EAX if you don't want to support TAB key selection
 // of the controls:

 mov(myForm.handle, eax);
 pop(esi);

end appStart;

The caller to appStart checks the return value in EAX to determine whether the form supports tab control
selection. If you return NULL in EAX, then the form ignores the tab key during execution. If you return the
form’s handle (myForm.handle), then Windows will support control/widget tab selection on the form.

// appTerminate-
//
// Called when the application is quitting, giving the app a chance
// to clean up after itself.
//
// Note that this is called *after* the mainAppWindow_t.onClose method
// executes (indeed, mainAppWindow_t.onClose, by posting the quit message,
// is what actually causes the program to begin terminating, which leads
// to the execution of this procedure).

procedure appTerminate;
begin appTerminate;

 // Clean up the main application's form.
 // Note that this will recursively clean up all the widgets on the form.

 myForm.destroy();
 w.DeleteObject(bkgBrush_g);

end appTerminate;

The HOWL system will call the appTerminate procedure after the myForm.onClose method terminates.
The appTerminate procedure is a good place to call the class destructor (myForm.destroy) and clean up any
other resources in use. In the code above, for example, the appTerminate procedure deletes the brush resource
created in the appStart procedure. Note that you should only call the main form destructor in the
appTerminate procedure, not in the myForm.onClose method. The destructor will free up any allocated
storage and other resources in use and you shouldn’t do this while the object is still active (e.g., while the
onClose method is executing).

// appException-
Released to the Public Domain Page 489

HLA Standard Library
//
// Gives the application the opportunity to clean up before
// aborting when an unhandled exception comes along:

procedure appException(theException:dword in eax);
begin appException;

 raise(eax);

end appException;

HOWL will call the appException procedure if an unhandled exception occurs during the execution of
your program. As a general rule, it’s a good idea to clean up resouces as best you can before bailing out of the
program.

// The main program for a HOWL application must simply
// call the HowlMainApp procedure.

begin howlDemo;

 HowlMainApp();

end howlDemo;

The main application of a HOWL program, as noted earlier, should simply call the HowlMainApp procedure
which is the real “main program” of the system.

Here’s the complete “trivial HOWL application” withou the annotations:

program howlDemo;
#linker("comdlg32.lib")
#linker("comctl32.lib")

?@NoDisplay := true;
?@NoStackAlign := true;

#includeOnce("stdlib.hhf")
#includeOnce("howl.hhf")

static
 align(4);
 bkgBrush_g :dword;
 bkgColor_g :dword;

wForm(myForm)
endwForm

// Implement the mainAppWindow create procedure and object instances:

myForm_implementation();

method myForm_t.onClose;
begin onClose;

 w.PostQuitMessage(0);
Page 490 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference

end onClose;

method myForm_t.onCreate;
begin onCreate;
end onCreate;

procedure appStart;
begin appStart;

 push(esi);

 // Create the main application window:

 w.GetSysColor(w.COLOR_MENU);
 mov(eax, bkgColor_g);
 w.CreateSolidBrush(eax);
 mov(eax, bkgBrush_g);
 myForm.create_myForm
 (
 "My Form", // Window title
 0, // Extended style
 0, // Style
 NULL, // No parent window
 w.CW_USEDEFAULT, // Let Windows position this guy
 w.CW_USEDEFAULT, // " " " " "
 600, // Width
 600, // Height
 bkgColor_g, // Background color
 true // Make visible on creation
);
 mov(esi, pmyForm); // Save pointer to main window object.

 // Return main window handle in EAX if you want the system
 // to support control selection via the TAB key. Return
 // NULL in EAX if you don't want to support TAB key selection
 // of the controls:

 mov(myForm.handle, eax);
 pop(esi);

end appStart;

// appTerminate-
//
// Called when the application is quitting, giving the app a chance
// to clean up after itself.
//
// Note that this is called *after* the mainAppWindow_t.onClose method
// executes (indeed, mainAppWindow_t.onClose, by posting the quit message,
// is what actually causes the program to begin terminating, which leads
// to the execution of this procedure).

procedure appTerminate;
begin appTerminate;
Released to the Public Domain Page 491

HLA Standard Library
 // Clean up the main application's form.
 // Note that this will recursively clean up all the widgets on the form.

 myForm.destroy();
 w.DeleteObject(bkgBrush_g);

end appTerminate;

// appException-
//
// Gives the application the opportunity to clean up before
// aborting when an unhandled exception comes along:

procedure appException(theException:dword in eax);
begin appException;

 raise(eax);

end appException;

// The main program for a HOWL application must simply
// call the HowlMainApp procedure.

begin howlDemo;

 HowlMainApp();

end howlDemo;

Assuming you’ve named this file “myForm.hla”, you can compile and run this program as follows:

hla myForm

You can run the application from a command-line by typing “myForm” or you can double-click on the icon
to run it in a traditional GUI style. Note that if you double-click on the icon, Windows will open up both the GUI
window (your form) and a console window. As it turns out, having the console window is useful for debugging
purposes, but if you want to ship a release version of your application, you’ll probably want to ditch the console
window. You can achieve this by using the following command line to compile your application:

hla -w myForm

When you run the program (either from the command line or by double clicking on an icon), an empty gray
window will appear. You can quit the program by clicking on the close box on the title bar.

To understand how the HOWL application framework functions, we need an example that is slightly more
complex than the trivial example presented thus far. Consider the following modifications to the previous
example:

procedure onPress(thisPtr:dword; wParam:dword; lParam:dword); forward;

wForm(myForm)

 wPushButton
 (
 myButton, // Field name in mainWindow object
 "Close", // Caption for push button
 10, // x position
 10, // y position
Page 492 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 125, // width
 25, // height
 onPress // "on click" event handler
);

endwForm
 .
 .
 .
procedure onPress(thisPtr:dword; wParam:dword; lParam:dword);
begin onPress;

 w.PostQuitMessage(0);

end onPress;

The onPress procedure is an example of an event handler. The HOWL code will automatically call various
event handlers in response to some system event, such as someone pressing a button on a form. In this example,
we’re going to place a push button on the formand the HOWL code will call the onPress event handler in
response to someone pressing that button. How does HOWL know to call onPress rather than some other
function? Easy, we’re going to tell it about onPress. The first step is to create a forward declaration for
onPress that must appear before the wForm..endwForm statement. We’re going to reference onPress inside
the wForm..endwForm statement, so we have to make sure it’s declared before wForm(myForm); the
forward declaration achieves this.2

The wPushButton delcaration appearing inside the wForm..endwForm statement tells HOWL to create a
push button object on the form. The first argument (myButton) is the name of the field that HOWL will create
inside the myForm class to represent the push button object. This is roughly equivalent to the following
declaration in HLA:
type

myForm: class inherits(wForm_t);
var

myButton: wPushButton_p;
.
.
.

endclass;

(note that type wPushButton_p is defined to be a pointer to wPushButton_t.)

The remaining arguments in the wPushButton statement define the appearance of the button on the actual
form. The second argument is the string label that HOWL will display on the button. The third through sixth
arguments, as the comments state, specfy the x- and y-coordinates and the width and height of the button on the
form. Note that the coordinates are relative to the upper-left-hand corner of the client area on the form.3 The last
argument is the one of most interest to us here. This is the name of the “on click” event handler that HOWL will
call when you press the push button on the form.

All widget event handlers are “widget procs”. This means that they are procedures with the following
parameter list:

type
 widgetProc :procedure(thisPtr:dword; wParam:dword; lParam:dword);

Note that widgetProc procedures are not class procedures or methods, they are standard procedures.
Specifically, this means that you can’t use the this or super reserved words inside a widgetProc. However,
note that a widgetProc does have a thisPtr parameter. This parameter will contain the address of the object
that signaled the event (that is, thisPtr will point at the myButton object in this example when the user presses
the button and HOWL calls the onPress procedure). In this example, we’ll not use thisPtr, but in more

2. You could also put the entire onPress procedure before the wForm declaration, but generally it’s better programming

style to put all procedure code after the declarations (like wForm), hence the use of the forward declaration in this code.

3. The client area does not include the title bar nor the menus. If the form is tabbed, it doesn’t include the area holding the
tabs, either.
Released to the Public Domain Page 493

HLA Standard Library
complex examples having a pointer to the object turns out to be important. The wParam and lParam arguments
are passed from Windows message procedure on to the widgetProc unchanged. For certain widget types, these
arguments contain important data. In the current example, we ignore these arguments as well.

For the onPress procedure in this example, we simply want to quit the program when the user presses the
“close” button. Therefore, this onPress procedure executes the same code as the main form’s onClose method,
that is: w.PostQuitMessage(0); If you compile this code and run it, you can quit the program by pressing
on the “close” button.

In most cases, these event handler procedures are how HOWL communicates with your code. Whenever the
user initiates some event by interacting with the widgets on the form, HOWL calls the corresponding widget
procedure(s) to let your program handle the event.
Page 494 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
18.2 The HOWL Declarative Language
In the previous section you saw a couple of simple examples of the HOWL declarative language. The

HOWL declarative language is the set of statements that are legal inside a wForm..endwForm sequence. The
wPushButton statement was a good example of a HOWL declarative language statement. There are many other
widget-defining statements present in the HOWL declarative language. This section will describe those
statements.

Before describing the actual statements that define widgets, you should note that the wForm..endwForm
statement is actually a class declaration in the HLA language. So in addition to all the legal declarative
statements, you can also put any legal class declarations inside a wForm..endwForm statement. For example, if
you want to communicate some data between various widgets on a form, one way to achieve this is by placing
some class var declarations inside the wForm..endwForm statement:

wForm(myForm)
var

someData :dword;
.
.
.

endwForm

Your event handlers and other code and refer to this data field using the syntax myForm.someData.
Of course, you can add any other legal class objects into this declaration including class constants,

procedures, methods, and iterators.
The howl.hhf header file implements the HOWL declarative language using an HLA context-free macro.

The wForm..endwForm macro declaration includes various #keyword macros (like wPushButton) that
expand into appropriate declarations in the class (and via some macro magic, store away code to create the
constructor procedure for the class). When you look at some HOWL delcarative code, it’s easy to forget that
you’re looking at a declaration, not at executable code. It’s easy to think that you should be able to do something
like the following:

wForm(myForm)

 mov(btnXPosn, eax);
 add(10, eax);
 mov(btnYPosn, ecx);
 add(10, ecx);
 wPushButton
 (
 myButton, // Field name in mainWindow object
 "Close", // Caption for push button
 eax, // x position
 ecx, // y position
 125, // width
 25, // height
 onPress // "on click" event handler
);

endwForm

However, this won’t work. Don’t forget that the statements inside the wForm..endwForm declaration are
emitted inside a class declaration. Stray statements such as “mov(btnXPosn, eax);” cannot appear inside a class
declaration.

It is possible to sneak certain statements into the your widget declarations. Except for the first parameter in
most widget declarations (which is the widget object’s name in the class declaration), HOWL records the
parameter’s value and “plays it back” when generating the code for the form’s class constructor. This means you
can sneak in some code if that code is appropriate for a parameter in a procedure call. Consider the following:

wForm(myForm)

 wPushButton
Released to the Public Domain Page 495

HLA Standard Library
 (
 myButton, // Field name in mainWindow object
 "Close", // Caption for push button
 returns
 ({
 mov(btnXPosn, eax);
 add(10, eax);
 }, "eax"),
 10, // y position
 125, // width
 25, // height
 onPress // "on click" event handler
);

endwForm

You may specify global variables as arguments to a widget declaration, but you have to ensure that you’ve
declared the global object prior to the wForm statement at that you’ve initialized the global object before calling
the constructor for that form.

The following subsections describe the wForm..endwForm statement as well as all the widgets that may
appear within a wForm..endwForm declaration.

 18.2.1 wForm
wForm(<<formname>>)
<< widget and class field declarations >>

endwForm

The wForm..endwForm statement declares a form (or window) for an application. Every application will
have at least one of these statements. The single argument is the name associated with the form. HOWL takes
this name and generates five distinct program entities from it:

• A class type named formname_t that represents the form’s type and holds the declarations
for all the widgets on the form.

• A data type named formname_p,
• A global variable named formname, of type formname_t, that is an instance of the form

object.
• A global variable named pformname of type formname_p that is initialized with the address

of the formname object.
• A constructor (class procedure) of the name formname_t.create_formname. You will call

this constructor to initialize the formname variable object.
Most programs will use the formname variable directly and ignore the pformname variable. However,

pformname is available if having a pointer to the object is more convenient that the object itself.
The constructor for the object has the following prototype:

procedure formname_t.create_formname
(
 caption :string;
 exStyle :dword;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 fillColor :dword;
 visible :boolean
);

caption HOWL displays this string in the title bar of the form’s window.
Page 496 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
exStyle HOWL logically ORs this MS Windows "extended window style" (w.WS_EX_* constants) with
w.WS_EX_CONTROLPARENT when creating the window for the form.

style HOWL logically ORs this MS Windows "window style" (w.WS_* constants) with
w.WS_CLIPCHILDREN | w.WS_OVERLAPPEDWINDOW when creating the window for the
form.

parent This is the handle of the parent window for this form. As most wForm objects do not have parent
windows, this parameter should contain NULL.

x The x-coordinate on the screen of the upper-left-hand corner of the form.

y The y-coordinate on the screen of the upper-left-hand corner of the form.

width The width of the form (in pixels)

height The height of the form (in pixels)

fillColor This is an RGB value that specifies the background color for the form. The red component is the
L.O. eight bits of this value, the green component is in bits 8..15 of this value, and the blue
component is in bits 16..23. Bits 24..31 should contain zero. The howl.hhf header file defines a
macro, RGB, that lets you assemble an RGB value from three constants: RGB(redConst,
greenConst, blueConst). For example, RGB(255, 0, 0) corresponds to red will a full intensity.

visible This is a boolean constant that specifies whether the form will be created in a visible (true) or
hidden (false) state. You can always call the formname.show() method to make a form visible
or the formname.hide() method to hide the form at run-time. For the main application
window, this field normally contains true.

Generally, formname objects are singletons. That is, you typically create only a single instance of a
formname object. However, as formname_t is a standard HLA data type, there is nothing stopping you from
creating multiple objects of this type. Most of the type, however, it would be somewhat confusing to have two
instances of the same form on the display at one time. In some instances this is reasonable. For example, if you
have a text editor form and you want to allow the user to edit multiple files (or multiple views of the same file)
concurrently, it might make sense to have two instances of the same window on the screen at one time.

wForm..endwForm declarations are not recursive. That is, you cannot embed a wForm inside another
wForm declaration. wForm windows are main application forms and support menus, tabs, and other facilities
only possible on the main application form, hence the restriction.

wForm objects are examples of containers in HOWL. A container, as its name suggests, may contain other
objects (specifically widget objects). There are a couple of different kinds of containers in HOWL, but wForm
contains are special because they can contain two things that other containers cannot: menus and tabs. Therefore,
this document will describe these widgets next

 18.2.2 wMainMenu..endwMainMenu
wMainMenu

<< main menu widget declarations >>

endwMainMenu

A wForm object can contain an optional main menu widget. This consists of the
wMainMenu..endwMainMenu statement. If a form contains a main menu widget, the main menu widget must be
the first widget declaration appearing on the form. E.g.,

wForm(myForm)

 wMainMenu

 << menu item declarations >>

 endwMainMenu

 << other widget declarations >>

endwForm
Released to the Public Domain Page 497

HLA Standard Library
Within the wMainMenu..endwMainMenu declaration you define the items that appear on the menu. These
include menu items, submenus, and separators. The following subsections describe each of these items.

A wMainMenu object can be thought of as a container object, albeit a very specialized one. wMainMenu
objects can contain wMenuItems, wMenuSeparators, and wSubMenu objects. Unlike normal containers,
however, wMainMenu objects cannot contain arbitrary HOWL objects.

 18.2.2.1 wMenuItem
A wMenuItem declaration defines a single menu item in a main menu or a submenu. This declaration is only

legal within a wMainMenu..endwMainMenu or wSubMenu..endwSubMenu declaration.

wMenuItem
(
 menuItemName,
 menuItemChecked,
 menuString,
 menuHandler
);

The menuItemName argument is an identifier that HOWL inserts into the wForm object to represent this
particular menu item. You generally won’t directly refer to this identifier in your programs, but HOWL requires
a field name so you must supply a unique (to the class) identifier here.

The menuItemCheck argument is a boolean constant that specifies whether the menu item can contain a
check mark next to it in the menu display. If this is true, then the menu item will have the ability to display (or
not display) a checkmark next to the menu item. If this field is false, then the menu item will not have this ability.
See the discussion of the wMenuItem_t.checked method to see how to set or clear this checkmark.

The menuString argument is a string constant that specifies the text that HOWL will display for the menu
item.

The menuHandler argument is either NULL or the name of a widgetProc that HOWL will call when the
user selects this particular menu item. If the argument is NULL, HOWL will ignore the selection of the menu
item.

HOWL displays menu items across the menu bar on a wForm (the menu bar appears immediately below the
title bar in the window). Generally, most main menu items are actually submenus, though straight menu items
are also legal in and main menu.

 18.2.2.2 wMenuSeparator

wMenuSeparator

The wMenuSeparator declaration should only appear in a submenu (that is, within a
wSubMenu..endwSubMenu declaration). This draws a horizontal bar across the menu to separate sets of menu
items in a submenu.

 18.2.2.3 wSubMenu..endwSubMenu

 wSubenu

 << menu item declarations >>

 endwSubmenu

Submenu item declarations are syntactically similar to main menu declarations. However, submenus must
always appear inside another menu declaration (either a wMainMenu..endwMainMenu or some other
wSubMenu..endwSubmenu declaration). Unlike wMenuItem declarations, there is no handler associated with a
submenu. HOWL (and Windows) automatically handles all the processing associated with a submenu.

 18.2.2.4 Menu Example
Here’s a complete menu declaration, including submenus within submenus and menu items in the main

menu:
Page 498 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
wForm(mainAppWindow);

wMainMenu;

wSubMenu(menu_1, "menu1");

wMenuItem(menu_1_1, false, "Item_1_1", handler_1_1);
wMenuItem(menu_1_2, true, "Item_1_2", handler_1_2);
wMenuItem(menu_1_3, true, "Item_1_3", handler_1_3);
wMenuSeparator;
wMenuItem(menu_exit, false, "Exit", exitHandler);

endwSubMenu;

wSubMenu(menu_2, "menu2");

wMenuItem(menu_2_1, false, "Item_2_1", handler_2_1);
wSubMenu(menu_2_2, "Menu_2_2");

wMenuItem(menu_2_2_1, false, "Item_2_2_1", handler_2_2_1);
wMenuItem(menu_2_2_2, false, "Item_2_2_2", handler_2_2_2);

endwSubMenu;

endwSubMenu;

wMenuItem(menu_3, false, "menu3", handler_3);

endwMainMenu;

<< other widget declarations >>

endwForm

 18.2.3 wTab
wTab
(

tabName, // identifier
tabString, // string
tabHandler, // widgetProc name or NULL
bkgColor // RGB color

)

By default, a wForm object provides a single surface to which you can attach widgets. The wTab declaration
allows you to specify multiple surfaces on a form, each user-selectable by clicking on a tab at the top of the form.
Like wForm objects, wTab objects are containers and may contain all the same widgets (except wMainMenu
items). If you utilize tabs on a wForm object, the first wTab declaration must appear after the wMainMenu
declaration (if any) and before any other widgets, e.g.,
wForm(mainAppWindow);

wMainMenu;

wMenuItem(exitMenu, false, "exit", exitHandler);

endwMainMenu;

wTab(tab1, "tab1", NULL, bkgColor_g);

<< widgets associated with tab1 >>
.

Released to the Public Domain Page 499

HLA Standard Library
.

.

The declarations for widgets associated with a tab appear immediately after that tab up to the next tab
declaration or the endwForm clause. Most forms, if they use tabs, will have at least two tabs. Here’s an example
declaration of a form with two tabs:

wForm(mainAppWindow);

wMainMenu;

wMenuItem(exitMenu, false, "exit", exitHandler);

endwMainMenu;

wTab(tab1, "tab1", NULL, bkgColor_g);

wPushButton
(

buttonOnTab1, // Identifier for button
"Tab1 Button", // Caption for push button
10, // x position
10, // y position
125, // width
25, // height
onClick1 // "on click" event handler

);

wTab(tab2, "tab2", NULL, bkgColor_g);

wPushButton
(

buttonOnTab2, // Identifier for button
"Tab2 Button", // Caption for push button
10, // x position
10, // y position
125, // width
25, // height
onClick2 // "on click" event handler

);

endwForm

This example creates two tab pages on the form, each with on button on the respective forms.
HOWL and Windows automatically handle switching from one form to the other when the user clicks on the

tabs.
Note that if you place on or more tabs on a form, the size of the client area (where you can put other widgets)

is reduced by the size of the tabs bar at the top of the form.

 18.2.4 Check Boxes
HOWL supports five types of check boxes: generic check boxes (wCheckable), standard check boxes

(wCheckBox), three-state check boxes (wCheckBox3), left-text check boxes (wCheckBoxLT), and three-state
left-text checkboxes (wCheckBox3LT).

The non-three-state checkboxes alternate between two states when the user clicks on the check box (or its
caption): checked and unchecked. The three-state check boxes alternate between three states: unchecked,
checked, and grayed (don’t care).

The standard (non-LT) checkboxes draw their check boxes immediately to the left of the caption (that is, the
text is to the right of the check box). The LT (left text) check boxes draw their text to the left of the check box.

CheckBox declarations let you specify an "onClick" event handler that HOWL will call whenever the user
clicks on a checkbox and changes its state. This argument should either be the name of a widgetProc procedure
Page 500 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
or NULL (if you don’t want HOWL to call any procedure, which is actually a common occurrence with
checkboxes).

 18.2.4.1 wCheckable
wCheckable
(

checkBoxID, // Identifier for checkbox
caption, // Caption for checkbox
style, // Style for checkbox
x, // x position on form
y, // y position on form
w, // width
h, // height
onClick // "on click" event handler (or NULL)

);

This declaration creates a generic checkbox on the form. The style argument must be one of the following
constants:

w.BS_3STATE Creates a button that is the same as a check box, except that the box can be
grayed as well as checked or unchecked. Use the grayed state to show that
the state of the check box is not determined.

w.BS_AUTO3STATE Creates a button that is the same as a three-state check box, except that the
box changes its state when the user selects it. The state cycles through
checked, grayed, and unchecked.

w.BS_AUTOCHECKBOX Creates a button that is the same as a check box, except that the check state
automatically toggles between checked and unchecked each time the user
selects the check box.

w.BS_CHECKBOX Creates a small, empty check box with text. By default, the text is displayed
to the right of the check box. To display the text to the left of the check box,
combine this flag with the w.BS_LEFTTEXT style (or on Windows 95 only,
with the equivalent w.BS_RIGHTBUTTON style).

Possibly OR’d logically with one of the following constants (as appropriate):

w.BS_BOTTOM Places text at the bottom of the button rectangle.

w.BS_LEFTTEXT Places text on the left side of the radio button or check box when combined
with a radio button or check box style. Same as the w.BS_RIGHTBUTTON
style.

w.BS_CENTER Centers text horizontally in the button rectangle.
w.BS_LEFT Left-justifies the text in the button rectangle. However, if the button is a

check box or radio button that does not have the w.BS_RIGHTBUTTON
style, the text is left justified on the right side of the check box or radio
button.

w.BS_PUSHLIKE Makes a button (such as a check box, three-state check box, or radio button)
look and act like a push button. The button looks raised when it isn't pushed
or checked, and sunken when it is pushed or checked.w.BS_RIGHTRight-
justifies text in the button rectangle. However, if the button is a check box or
radio button that does not have the w.BS_RIGHTBUTTON style, the text is
right justified on the right side of the check box or radio button.

w.BS_RIGHTBUTTON Positions a radio button's circle or a check box's square on the right side of
the button rectangle. Same as the w.BS_LEFTTEXT style.

w.BS_TOP Places text at the top of the button rectangle.
w.BS_VCENTER Places text in the middle (vertically) of the button rectangle.

 18.2.4.2 wCheckBox
wCheckBox
Released to the Public Domain Page 501

HLA Standard Library
(
checkBoxID, // Identifier for checkbox
caption, // Caption for checkbox
x, // x position on form
y, // y position on form
w, // width
h, // height
onClick // "on click" event handler (or NULL)

);

This declaration creates a standard checkbox on the form.

 18.2.4.3 wCheckBox3
wCheckBox3
(

checkBoxID, // Identifier for checkbox
caption, // Caption for checkbox
x, // x position on form
y, // y position on form
w, // width
h, // height
onClick // "on click" event handler (or NULL)

);

This declaration creates a three-state checkbox on the form.

 18.2.4.4 wCheckBox3LT
wCheckBox3LT
(

checkBoxID, // Identifier for checkbox
caption, // Caption for checkbox
x, // x position on form
y, // y position on form
w, // width
h, // height
onClick // "on click" event handler (or NULL)

);

This declaration creates a three-state, left-text, checkbox on the form.

 18.2.4.5 wCheckBoxLT
wCheckBoxLT
(

checkBoxID, // Identifier for checkbox
caption, // Caption for checkbox
x, // x position on form
y, // y position on form
w, // width
h, // height
onClick // "on click" event handler (or NULL)

);

This declaration creates a left-text checkbox on the form.

 18.2.5 wComboBox
A combobox is a combination editBox, listBox, and pull-down menu. The user can type text directly into the

editBox section of the combo box or click on the arrow on the right side of the widget to open up a pull-down
menu from which the user can select an item.
Page 502 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
wComboBox
(

comboBoxID, // ComboBox name (an identifier)
"combo box", // Initial string in the edit box (usually and empty string)
x, // x
y, // y
w, // width
h, // height
sorted, // true or false
onCBSelChange, // onSelChange handler (or NULL)
"comboBox1", // List of initial string values for the list
"comboBox2", // This list may contain zero or more items.
"comboBox3"

);

The comboBoxID argument is the HLA identifier name that HOWL will use for the comboBox object
within the wForm declaration; this name should be unique within the form declaration.

The second argument is a string that HOWL will use as the default value of the edit box field when the form
is first created. Most often, this will be the empty string. Note that once the user enters data into the edit box or
selects and entry from the pull-down menu list, the initial string value is lost.

The x, y, w, and h fields specify the position and size of the combo box on the form.
The sorted field is a boolean value that determines whether the fields of the pull-down menu list are sorted

or remain in their "inserted" order. If this field is true, then Windows will sort each entry you add to the list
(including the initial entries). If this field is false, then Windows leaves the entries in the order that you add them.
Note that it is certainly possible to add and delete fields while the program is running; see the discussion of the
wComboBox_t type later in this document. Most often, you’ll probably specify false for this field.

The onCBSelChange field lets you specify an "on selection change" event handler or NULL if you don’t
want HOWL to invoke an event handler when the selection change. Normally, you’ll put NULL in this field
because you’ll normally read the text from the widget when you press some other button or when some other
event occurs, not when the user changes the text selection in the edit box or selects some entry from the pull-
down menu list.

The remaining entries in the wComboBox declaration are optional. These entries, if present, must all be
string constants that HOWL will use to populate the pull-down menu list. Note that you can add strings to the list
at run time, so you don’t have to populate the list at declaration time. However, for many lists you’ll know the
items the user can select from at design time, so you can fill in those entries in the wComboBox declaration.

 18.2.6 wDragListBox
A wDragListBox object is similar to a wListBox (list box) object that provides the user with the ability to

rearrange items in the list box. The declaration of a wDragListBox is

wDragListBox
(

dlName, // DragListBox name (HLA identifier)
x, // x-coordinate
y, // y-coordinate
w, // width
h, // height
onListBoxClick, // onClick handler
"DragListBox1", // Initial list population (can be empty)
"DragListBox2",
"DragListBox3"

);

The dlName argument is the name that HOWL will use in the wForm declaration for this wDragListBox
object. This name must be unique within the wForm declaration.

The x, y, w, and h arguments specify the position and size of the wDragListBox object on the form.
The onListBoxClick argument is the name of a widgetProc that HOWL will call whenever the user

clicks on one of the list items. This field can be NULL, in which case HOWL won’t bother to call any procedure
when the user clicks on an item (this is actually a common situation; usually the program will determine the
Released to the Public Domain Page 503

HLA Standard Library
currently selected item in a wDragListBox when some other event occurs, and ignore the immediate changes
that might occur in a wDragListBox object).

The remaining objects are optional. If present, they must all be strings and the wDragListBox declaration
uses these strings to initially populate the wDragListBox object.

 18.2.7 wEditBox
A wEditBox object allows the user to enter string data into a program.

wEditBox
(

ebName, // HLA identifier for this object
InitialText, // Initial text for edit box
x, // x position
y, // y position
w, // width
h, // height
s, // style
onChange // onChange handler (can be NULL)

);

The ebName argument is the name that HOWL will use in the wForm declaration for this wEditBox object.
This name must be unique within the wForm declaration.

The InitialText argument is a string (usually empty) that HOWL uses to initialize the edit box’s text
field when the form is first created.

The x, y, w, and h arguments specify the position and size of the wEditBox object on the form.
The s argument is the edit box style. This is any of the following edit box styles that HOWL logically ORs

with the w.AUTOHSCROLL style:

w.ES_AUTOHSCROLL Automatically scrolls text to the right by 10 characters when the user types a
character at the end of the line. When the user presses the ENTER key, the
control scrolls all text back to position zero.

w.ES_AUTOVSCROLL Automatically scrolls text up one page when the user presses the ENTER key on
the last line.

w.ES_CENTER Centers text in a multiline edit control.

w.ES_LEFT Left-aligns text.

w.ES_LOWERCASE Converts all characters to lowercase as they are typed into the edit control.

w.ES_MULTILINE Designates a multiline edit control. The default is single-line edit control.

When the multiline edit control is in a dialog box, the default response to
pressing the ENTER key is to activate the default button. To use the ENTER key
as a carriage return, use the ES_WANTRETURN style.

When the multiline edit control is not in a dialog box and the
ES_AUTOVSCROLL style is specified, the edit control shows as many lines as
possible and scrolls vertically when the user presses the ENTER key. If you do
not specify ES_AUTOVSCROLL, the edit control shows as many lines as
possible and beeps if the user presses the ENTER key when no more lines can be
displayed.

If you specify the ES_AUTOHSCROLL style, the multiline edit control
automatically scrolls horizontally when the caret goes past the right edge of the
control. To start a new line, the user must press the ENTER key. If you do not
specify ES_AUTOHSCROLL, the control automatically wraps words to the
beginning of the next line when necessary. A new line is also started if the user
presses the ENTER key. The window size determines the position of the word
wrap. If the window size changes, the word wrapping position changes and the
text is redisplayed.

Multiline edit controls can have scroll bars. An edit control with scroll bars
processes its own scroll bar messages. Note that edit controls without scroll bars
Page 504 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
scroll as described in the previous paragraphs and process any scroll messages
sent by the parent window.

w.ES_NOHIDESEL Negates the default behavior for an edit control. The default behavior hides the
selection when the control loses the input focus and inverts the selection when
the control receives the input focus. If you specify ES_NOHIDESEL, the
selected text is inverted, even if the control does not have the focus.

w.ES_NUMBER Allows only digits to be entered into the edit control.

w.ES_OEMCONVERT Converts text entered in the edit control. The text is converted from the Windows
character set to the OEM character set and then back to the Windows set. This
ensures proper character conversion when the application calls the CharToOem
function to convert a Windows string in the edit control to OEM characters. This
style is most useful for edit controls that contain filenames.

w.ES_PASSWORD Displays an asterisk (*) for each character typed into the edit control. You can
use the EM_SETPASSWORDCHAR message to change the character that is
displayed.

w.ES_READONLY Prevents the user from typing or editing text in the edit control.

w.ES_RIGHT Right-aligns text in a multiline edit control.

w.ES_UPPERCASE Converts all characters to uppercase as they are typed into the edit control.

w.ES_WANTRETURN Specifies that a carriage return be inserted when the user presses the ENTER key
while entering text into a multiline edit control in a dialog box. If you do not
specify this style, pressing the ENTER key has the same effect as pressing the
dialog box's default push button. This style has no effect on a single-line edit
control.

The onChange argument is the name of a widgetProc that HOWL will call whenever the user changes any
text in the edit box. This field can be NULL, in which case HOWL won’t bother to call any procedure when the
user changes the text (this is actually a common situation; usually the program will determine the currently
selected item in a wEditBox when some other event occurs, and ignore the immediate changes that might occur
in a wEditBox object). Note that if onChange is non-NULL, then HOWL will call the widgetProc any time
there is a single-character change to the edit box; this is probably more often than you’d like, which is why this
field is generally NULL and applications simply read the data from the edit box when some other event occurs.

 18.2.8 wEllipse
wEllipse
(

ellipseName, // HLA identifier
x, // x
y, // y
w, // width
h, // height
lineColor, // linecolor (RGB)
fillColor, // Ellipse interior color (RGB)
bkgColor // Ellipse exterior color (RGB)

)

The ellipseName argument is the identifier name that HOWL uses in the wForm declaration for the ellipse
object. This name must be unique within the wForm declaration.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the ellipse.
If these coordinates and sizes form a square, then you’ll draw a circle on the form.

The lineColor argument specifies an RGB value that HOWL uses when drawing the outline of the ellipse
(the pen color). wEllipse objects always draw the outline with a solid line.

The fillColor argument specifies an RGB value that HOWL uses to fill the interior of the ellipse.
wEllipse objects always fill the interior with a solid brush (color).
Released to the Public Domain Page 505

HLA Standard Library
The bkgColor argument specifies an RGB value that HOWL uses to fill the retangular area described by x,
y, w, and h that is outside the ellipse. As a general rule, this should be the same color as the background color
for the form unless you want a visible rectangle surrounding the ellipse. If the H.O. byte of this color value
contains $FF, then HOWL will use the RGB value in the L.O. three bytes to fill the initial object window’s
background color but will not redraw the background thereafter (making the object’s background transparent).

 18.2.9 wIcon
The wIcon declaration places an icon object on the form.

wIcon
(

iconIdentifier, // icon name (HLA identifier)
IconResourceStr, // icon resource value
x, // x
y, // y
w, // width
h, // height
bkgColor // background color

)

The iconIdentifier field is an HLA identifier that HOWL uses in the form declaration for this particular
icon. This name must be unique within the wForm declaration.

The IconResourceStr argument is either a string containing the name of an internal icon resource value
or a constant that is less than $1_0000 (that specifies a system icon). If this is a string, it is not a filename for the
icon, rather it is a resource ID produced by a resource compiler. See the HLA examples (HOWL directory) for
examples that show how to use the resource compiler to produce icons for a program. If this is a value less than
$1_0000, then it must be one of the following values:

• w.IDI_APPLICATION
• w.IDI_ASTERISK
• w.IDI_EXCLAMATION
• w.IDI_HAND
• w.IDI_QUESTION
• w.IDI_WINLOGO

Because of syntactical issues with the HLA macro language, if you want to specify these constants as the
IconResourceStr argument (which normally must be a string), the best way to do this is to use instruction
composition thusly:

wIcon
(

icon1, // icon name
mov(w.IDI_APPLICATION, eax), // icon resource value
10, // x
440, // y
32, // width
32, // height
bkgColor_g // background color

)

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the icon. If
this bounding box is too small for the icon, portions of the icon will be clipped. If this bounding box is too big for
the icon, then HOWL will fill the extra area with the background color.

The bkgColor argument specifies the background color that HOWL will use to fill the bounding box for the
icon if the icon itself is smaller than the bounding box specified by the x, y, w, and h fields.

 18.2.10 wGroupBox..endwGroupBox
A wGroupBox object is a container. It draws a rectangular box on a form that contains other objects. All the

widgets you declare between a wGroupBox statement and the corresponding endwGroupBox terminator will be
contained by the group box (and can be treated as a whole) at run time.

Note that placing wRadioButtons within a wGroupBox object does not automatically create a set of radio
set buttons. See the wRadioSet declaration for that purpose. wGroupBox objects really exist just to make the
form look pretty.
Page 506 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
wGroupBox
(

groupBoxID, // HLA identifier
Caption, // String caption for group box
x, // x position
y, // y position
w, // width
h // height

)

<<Other widget declarations, not including Radio Sets >>

endwGroupBox

 18.2.11 wLabel
wLabel
(

labelID, // HLA identifier
labelString, // Label string
x, // x
y, // y
w, // width
y, // height
style, // Alignment and style
textColor, // Foreground color
bkgColor // Background color

);

The wLabel declaration lets you place a text string on the form.
The labelID argument is the name of the wLabel field within the form’s class. This name must be unique

within the wForm declaration.
The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the label’s

string. If this bounding box is too small for the string, portions of the string will be clipped. If this bounding box
is too big for the icon, then HOWL will fill the extra area with the background color.

The style field is one or more of the following Windows constants logically-ORed together:

w.DT_BOTTOM Bottom-justifies text. This value must be combined with DT_SINGLELINE.

w.DT_CENTER Centers text horizontally.

w.DT_EXPANDTABS Expands tab characters. The default number of characters per tab is eight.

w.DT_LEFT Aligns text to the left.

w.DT_NOPREFIX Turns off processing of prefix characters. Normally, DrawText interprets the
mnemonic-prefix character & as a directive to underscore the character that
follows, and the mnemonic-prefix characters && as a directive to print a single
&. By specifying DT_NOPREFIX, this processing is turned off.

w.DT_RIGHT Aligns text to the right.

w.DT_SINGLELINE Displays text on a single line only. Carriage returns and linefeeds do not break
the line.

w.DT_TOP Top-justifies text (single line only).

w.DT_VCENTER Centers text vertically (single line only).

w.DT_WORDBREAK Breaks words. Lines are automatically broken between words if a word would
extend past the edge of the rectangle specified by the lpRect parameter. A
carriage return-linefeed sequence also breaks the line.

For example, to vertically and horizontally center a string within the wLabel bounding box, you would use
the following constant for the style field:
Released to the Public Domain Page 507

HLA Standard Library
w.DT_CENTER | w.DT_VCENTER | w.DT_SINGLELINE

The textColor and bkgColor fields are RGB values that specify the (solid) colors used to draw the text
and the backgroun for the text. Usually the text’s background color is the same as the form’s background color
unless you are trying to create a special effect.

 18.2.12 wListBox
A wListBox object contains a sequence of strings from which the user can select a single entry. The

declaration of a wListBox is

wListBox
(

lbName, // ListBox name (HLA identifier)
x, // x-coordinate
y, // y-coordinate
w, // width
h, // height
sort, // true or false
onListBoxClick, // onClick handler
"ListBox1", // Initial list population (can be empty)
"ListBox2",
"ListBox3"

);

The lbName argument is the name that HOWL will use in the wForm declaration for this wListBox object.
This name must be unique within the wForm declaration.

The x, y, w, and h arguments specify the position and size of the wListBox object on the form.
The onListBoxClick argument is the name of a widgetProc that HOWL will call whenever the user

clicks on one of the list items. This field can be NULL, in which case HOWL won’t bother to call any procedure
when the user clicks on an item (this is actually a common situation; usually the program will determine the
currently selected item in a wListBox when some other event occurs).

The remaining objects are optional. If present, they must all be strings and the wListBox declaration uses
these strings to initially populate the wListBox object.

 18.2.13 wPasswdBox
A wPasswdBox object is very similar to a wEditBox object insofar as it allows the user to enter a string of

text onto the form. The difference is that the wPasswdBox object displays asterisks (or some other character)
when the user types a string into the editbox. This shields sensitive information from prying eyes.

wPasswdBox
(

pbName, // HLA identifier for this object
IntitialText, // Initial text for edit box
x, // x position
y, // y position
w, // width
h, // height
s, // style
onChange // onChange handler (can be NULL)

);

The pbName argument is the name that HOWL will use in the wForm declaration for this wPasswdBox
object. This name must be unique within the wForm declaration.

The InitialText argument is a string (usually empty) that HOWL uses to initialize the password box’s
text field when the form is first created. This is almost always the empty string.
Page 508 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
The x, y, w, and h arguments specify the position and size of the wPasswdBox object on the form.
The s parameter is the Windows edit box style that HOWL logically ORs with the value

(w.ES_AUTOHSCROLL | w.ES_PASSWORD). See the discussion of the available styles in the description of the
wEditBox object.

The onChange argument is the name of a widgetProc that HOWL will call whenever the user changes any
text in the password box. This field can be NULL, in which case HOWL won’t bother to call any procedure
when the user changes the text (this is actually a common situation; usually the program will determine the
currently selected item in a wPasswdBox when some other event occurs, and ignore the immediate changes that
might occur in a wPasswdBox object). Note that if onChange is non-NULL, then HOWL will call the
widgetProc any time there is a single-character change to the password box; this is probably more often than
you’d like, which is why this field is generally NULL and applications simply read the data from the password
box when some other event occurs.

 18.2.14 wPie
The wPie declaration defines a graphic object on the form that is a "pie slice", that is, a portion of a pie

graph.
wPie
(

pieName, // HLA identifier
x, // x
y, // y
w, // width
h, // height
startAngle, // Starting handle (in degrees)
endAngle, // Ending angle (in degrees)
lineColor, // linecolor (RGB)
fillColor, // Ellipse interior color (RGB)
bkgColor // Ellipse exterior color (RGB)

)

The pieName argument is the identifier name that HOWL uses in the wForm declaration for the pie slice
object. This name must be unique within the wForm declaration.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the pie slice.
The startAngle parameter is a real64 value that specifies the starting angle of the pie slice. The angle is

specified in degrees. Angles are measured in a counter-clockwise fashion from the vertical line going from the
middle of the bounding box to the top of the bounding box (warning: this is not intuitive).

The endAngle parameter is a real64 value that specifies the ending angle of the pie slice. The angle is
specified in degrees. The wPie object draws a slice of a pie graph filling in the ellipse from the startAngle to
the endAngle in a counter-clockwise fashion.

The lineColor argument specifies an RGB value that HOWL uses when drawing the outline of the pie
slice (the pen color). wPie objects always draw the outline with a solid line.

The fillColor argument specifies an RGB value that HOWL uses to fill the interior of the pie slice. wPie
objects always fill the interior with a solid brush (color).

The bkgColor argument specifies an RGB value that HOWL uses to fill the retangular area described by x,
y, w, and h that is outside the pie slice. As a general rule, this should be the same color as the background
color for the form unless you want a visible rectangle surrounding the pie slice. If the H.O. byte of this color
value contains $FF, then HOWL will use the RGB value in the L.O. three bytes to fill the initial object window’s
background color but will not redraw the background thereafter (making the object’s background transparent).

 18.2.15 wPolygon
The wPolygon object draws a multi-vertex polygon on the screen.

wPolygon
(

polyName, // HLA identifier
x, // x
y, // y
w, // width
Released to the Public Domain Page 509

HLA Standard Library
h, // height
lineColor, // linecolor (RGB)
fillColor, // Ellipse interior color (RGB)
bkgColor, // Ellipse exterior color (RGB)
x1, // Optional points list
y1, // Must have an even number of coordinates
x2,
y2,
.
.
.
xn,
yn

)

The polyName argument is the identifier name that HOWL uses in the wForm declaration for the polygon
object. This name must be unique within the wForm declaration.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the polygon.
The lineColor argument specifies an RGB value that HOWL uses when drawing the outline of the

polygon (the pen color). wPolygon objects always draw the outline with a solid line.
The fillColor argument specifies an RGB value that HOWL uses to fill the interior of the polygon.

wPolygon objects always fill the interior with a solid brush (color).
The bkgColor argument specifies an RGB value that HOWL uses to fill the retangular area described by x,

y, w, and h that is outside the polygon. As a general rule, this should be the same color as the background
color for the form unless you want a visible rectangle surrounding the polygon. If the H.O. byte of this color
value contains $FF, then HOWL will use the RGB value in the L.O. three bytes to fill the initial object window’s
background color but will not redraw the background thereafter (making the object’s background transparent).

The remain arguments always appear in pairs and specify the points that make up the polygon. If you specify
n points (n*2 arguments), HOWL will draw n lines between each pair of points (and between (xn,yn) and (x1,y1)
to complete the closed polygon).

 18.2.16 wBitmap
The wBitmap declaration creates a bitmapped object on the form.

wBitmap
(

bmName, // HLA identifier
bmResource, // Bitmap resource name
x, // x
y, // y
w, // width
h, // height
bkgColor // RGB background color

)

The bmName argument is the identifier name that HOWL uses in the wForm declaration for the bitmapped
object. This name must be unique within the wForm declaration.

The bmResource argument is a string constant specifying the name of the bitmap resource within the
executable file. Note that this is not a filename on the disk. You must use the resource editor to compile a bitmap
file into the executable file. The name you provide to the resource editor for this bitmapped object is the name
you use for the bmResource string.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the bitmap.
If the w and h fields are too small, Windows will truncate the bitmap when it draws it. If the w and h fields are
larger than the bitmap, Windows will fill the extra area with the value of the bkgColor argument.

The bkgColor argument specifies an RGB value that HOWL uses to fill the retangular area described by x,
y, w, and h that is outside the bitmap. As a general rule, this should be the same color as the background color
for the form unless you want a visible rectangle surrounding the bitmap. If the H.O. byte of this color value
contains $FF, then HOWL will use the RGB value in the L.O. three bytes to fill the initial object window’s
background color but will not redraw the background thereafter (making the object’s background transparent).
Page 510 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 18.2.17 wProgressBar
The wProgressBar declaration creates a progress bar object on the form.

wProgressBar
(

pbName, // HLA identifier
x, // x
y, // y
w, // width
h // height

)

The pbName argument is the identifier name that HOWL uses in the wForm declaration for the progress bar
object. This name must be unique within the wForm declaration.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the progress
bar.

See the description of the wProgressBar_t class type later in the document to learn how to specify the
current progress in the progress bar.

 18.2.18 wPushButton
wPushButton
(

pbID, // Identifier for push button
caption, // Caption for push button
x, // x position on form
y, // y position on form
w, // width
h, // height
onClick // "on click" event handler (or NULL)

);

The pbName argument is the identifier name that HOWL uses in the wForm declaration for the push button
object. This name must be unique within the wForm declaration.

The caption argument is a string that Windows will display on the push button.
The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the push

button.
The onClick argument is either NULL or the name of a widgetProc that HOWL will call when the user

presses the corresponding button on the form.

 18.2.19 Radio Button Objects
wForm declarations allow you to place radio buttons directly on a form or you can group a set of radio

buttons together in a radio button set. In general, you’ll rarely use the first form because wRadioButton and
wRadioButtonLT objects don’t readily exhibit button semantics. On a form by themselves, radio buttons behave
just like check box objects so you’re better off using check box objects than radio buttons for this purpose.
Generally, wRadioButton and wRadioButtonLT objects are useful when you’re building a form dynamically
at run time rather than at design time with the HOWL declarative language. Nevertheless, the HOWL
declarative language includes entries for wRadioButton and wRadioButtonLT objects for the sake of
completeness.

 18.2.19.1 wRadioButton
wRadioButton
(

rbID, // Identifier for radio button
caption, // Caption for radio button
style, // Style for radio button
x, // x position on form
y, // y position on form
Released to the Public Domain Page 511

HLA Standard Library
w, // width
h, // height
onClick // "on click" event handler (or NULL)

);

The rbName argument is the identifier name that HOWL uses in the wForm declaration for the radio button
object. This name must be unique within the wForm declaration.

The caption argument is a string that Windows will display to the right of the radio button.
The style argument is either 0 (for standalone radio buttons) or one of the following constants (for radio

button groups):
For the first radio button in a group:

w.BS_AUTORADIOBUTTON | w.WS_GROUP | w.WS_TABSTOP

For all but the first radio button in a group:

w.BS_AUTORADIOBUTTON

Note that you should really use the wRadioSet object to create sets of radio buttons rather than grouping
them manually. Note that you must declare all grouped radio buttons consecutively in your source file. Any
intervening widgets will end a radio set button group.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the radio
button.

The onClick argument is either NULL or the name of a widgetProc that HOWL will call when the user
presses the corresponding radio button on the form.

 18.2.19.2 wRadioButtonLT
wRadioButtonLT
(

rbID, // Identifier for radio button
caption, // Caption for radio button
style, // Style for radio button
x, // x position on form
y, // y position on form
w, // width
h, // height
onClick // "on click" event handler (or NULL)

);

wRadioButtonLT objects are identical to wRadioButton objects except the caption text is draw on the left
side of the radio buton rather than on the right side.

 18.2.19.3 wRadioSet..endwRadioSet
Functional radio buttons are created as part of a radio button set. The wRadioSet..endwRadioSet block

encapsulates a set of wRadioSetButton and wRadioSetButtonLT objects that HOWL treats as a single set of
radio buttons rather than independent buttons. The wRadioSet declaration takes the following form:
wRadioSet
(

rsID, // Identifier for radio set
caption, // Caption for radio set group box
x, // x position on form
y, // y position on form
w, // width
h // height

);

<< radio set button declarations >>
Page 512 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
endwRadioSet

Only wRadioSetButton and wRadioSetButtonLT declarations may appear within a
wRadioSet..endwRadioSet declaration and you cannot nest wRadioSet..endwRadioSet declarations.
The wRadioSet..endwRadioSet declaration creates a group box with the specified bounding box. It draws
the caption string through the line of the bounding box in the upper left hand corner.

All radio set buttons appearing in a wRadioSet group are treated as a single set of radio buttons. At most
one radio set button will be checked in the group; pressing one button unchecks any other buttons in the same
group.

Note that a wRadioSet object is a container object. It contains all the radio set buttons associated with the
radio set.

 18.2.19.3.1 wRadioSetButton
wRadioSetButton
(

rsbtnID, // HLA identifier
caption, // String caption for radio button
x, // x position
y, // y position
w, // width
y, // height
onClick // "on click" event handler

);

The wRadioSetButton declaration may only appear within a wRadioSet..endwRadioSet statement.
The rsbtnID argument must be a unique (to the form) HLA identifier. HOWL uses this identifier as the

field name within the form class of the wForm..endwForm declaration.
The caption field is a string that HOWL displays to the right of the radio button image.
The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the radio

button.
The onClick argument is either NULL or the name of a widgetProc that HOWL will call when the user

presses the corresponding radio button on the form.

 18.2.19.3.2 wRadioSetButtonLT
wRadioSetButtonLT
(

rsbtnID, // HLA identifier
caption, // String caption for radio button
x, // x position
y, // y position
w, // width
y, // height
onClick // "on click" event handler

);

The wRadioSetButtonLT declaration may only appear within a wRadioSet..endwRadioSet statement.
The rsbtnID argument must be a unique (to the form) HLA identifier. HOWL uses this identifier as the

field name within the form class of the wForm..endwForm declaration.
The caption field is a string that HOWL displays to the left of the radio button image.
The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the radio

button.
The onClick argument is either NULL or the name of a widgetProc that HOWL will call when the user

presses the corresponding radio button on the form.
Released to the Public Domain Page 513

HLA Standard Library
 18.2.20 wRectangle
wRectangle
(

rectName, // HLA identifier
x, // x
y, // y
w, // width
h, // height
lineColor, // linecolor (RGB)
fillColor // Rectangle interior color (RGB)

)

The rectName argument is the identifier name that HOWL uses in the wForm declaration for the rectangle
object. This name must be unique within the wForm declaration.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the
rectangle.

The lineColor argument specifies an RGB value that HOWL uses when drawing the outline of the
rectangle (the pen color). wRectangle objects always draw the outline with a solid line.

The fillColor argument specifies an RGB value that HOWL uses to fill the interior of the rectangle.
wRectangle objects always fill the interior with a solid brush (color).

Note that there is no background color (as exists for other graphic objects). This is because the rectangle
completely fills the bounding box so there is no need to fill the background area as it never shows through.

 18.2.21 wRoundRect
wRoundRect
(

rrectName, // HLA identifier
x, // x
y, // y
w, // width
h, // height
cw, // Corner width
cht, // Corner height
lineColor, // linecolor (RGB)
fillColor, // Round rectangle interior color (RGB)
BkgColor // Round rectangle exterior color (RGB)

)

The rrectName argument is the identifier name that HOWL uses in the wForm declaration for the round
rectangle object. This name must be unique within the wForm declaration.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the round
rectangle.

The cw and cht arguments specify the width and height of the ellipse used to draw the corners of the round
rectangle.

The lineColor argument specifies an RGB value that HOWL uses when drawing the outline of the round
rectangle (the pen color). wRoundRect objects always draw the outline with a solid line.

The fillColor argument specifies an RGB value that HOWL uses to fill the interior of the rectangle.
wRectangle objects always fill the interior with a solid brush (color).

The bkgColor argument specifies an RGB value that HOWL uses to fill the retangular area described by x,
y, w, and h that is outside the round rectangle. As a general rule, this should be the same color as the
background color for the form unless you want a visible rectangle surrounding the bitmap. If the H.O. byte of this
color value contains $FF, then HOWL will use the RGB value in the L.O. three bytes to fill the initial object
window’s background color but will not redraw the background thereafter (making the object’s background
transparent).
Page 514 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 18.2.22 wScrollBar
wScrollBar
(

scrollBarID, // Scrollbar name (HLA id)
x, // x
y, // y
w, // width
h, // height
style, // Scroll bar style
onChange // On change handler

)

The scrollBarID argument is the identifier name that HOWL uses in the wForm declaration for the scroll
bar object. This name must be unique within the wForm declaration.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the scroll
bar.

The style argument specifies the scroll bar style and is the logical-OR of zero or more of the following
constants:

w.SBS_BOTTOMALIGN Aligns the bottom edge of the scroll bar with the bottom edge of the
rectangle defined by the CreateWindow parameters x, y, nWidth, and
nHeight. The scroll bar has the default height for system scroll bars. Use
this style with the SBS_HORZ style.

w.SBS_HORZ Designates a horizontal scroll bar. If neither the SBS_BOTTOMALIGN
nor SBS_TOPALIGN style is specified, the scroll bar has the height,
width, and position specified by the parameters of CreateWindow.

w.SBS_LEFTALIGN Aligns the left edge of the scroll bar with the left edge of the rectangle
defined by the parameters of CreateWindow. The scroll bar has the default
width for system scroll bars. Use this style with the SBS_VERT style.

w.SBS_RIGHTALIGN Aligns the right edge of the scroll bar with the right edge of the rectangle
defined by the parameters of CreateWindow. The scroll bar has the default
width for system scroll bars. Use this style with the SBS_VERT style.

w.SBS_SIZEBOX Designates a size box. If you specify neither the
SBS_SIZEBOXBOTTOMRIGHTALIGN nor the
SBS_SIZEBOXTOPLEFTALIGN style, the size box has the height,
width, and position specified by the parameters of CreateWindow.

w.SBS_SIZEBOXBOTTOMRIGHTALIGN Aligns the lower-right corner of the size box with the lower-
right corner of the rectangle specified by the parameters of
CreateWindow. The size box has the default size for system
size boxes. Use this style with the SBS_SIZEBOX style.

w. SBS_SIZEBOXTOPLEFTALIGN Aligns the upper-left corner of the size box with the upper-left
corner of the rectangle specified by the parameters of
CreateWindow. The size box has the default size for system
size boxes. Use this style with the SBS_SIZEBOX style.

w.SBS_SIZEGRIP Same as SBS_SIZEBOX, but with a raised edge.

w.SBS_TOPALIGN Aligns the top edge of the scroll bar with the top edge of the rectangle
defined by the parameters of CreateWindow. The scroll bar has the default
height for system scroll bars. Use this style with the SBS_HORZ style.

w.SBS_VERT Designates a vertical scroll bar. If you specify neither the
SBS_RIGHTALIGN nor the SBS_LEFTALIGN style, the scroll bar has
the height, width, and position specified by the parameters of
CreateWindow.

The onChange argument is the name of a widgetProc that HOWL will call whenever there is a change
made to the scroll bar’s position.
Released to the Public Domain Page 515

HLA Standard Library
 18.2.23 wTextEdit
A wTextEdit object allows the user to enter a text file object.

wTextEdit
(

teName, // HLA identifier for this object
InitialText, // Initial text for text edit object
x, // x position
y, // y position
w, // width
h, // height
s, // style
onChange // onChange handler (can be NULL)

);

The teName argument is the name that HOWL will use in the wForm declaration for this wTextEdit object.
This name must be unique within the wForm declaration.

The InitialText argument is a string (usually empty) that HOWL uses to initialize the text editor’s text
field when the form is first created.

The x, y, w, and h arguments specify the position and size of the wTextEdit object on the form.
The s argument is the Windows editbox style that HOWL logically ORs with the value (w.ES_MULTILINE

| w.ES_WANTRETURN | w.WS_HSCROLL | w.WS_VSCROLL). See the discussion of the legal values in the
section on wEditBox.

The onChange argument is the name of a widgetProc that HOWL will call whenever the user changes any
text in the text editor. This field can be NULL, in which case HOWL won’t bother to call any procedure when
the user changes the text (this is actually the most common situation; usually the program will determine the
currently selected item in a wTextEdit when some other event occurs, and ignore the immediate changes that
might occur in a wTextEdit object). Note that if onChange is non-NULL, then HOWL will call the
widgetProc any time there is a single-character change to the text edit object; this is probably more often than
you’d like, which is why this field is generally NULL and applications simply read the data from the text edit
object when some other event occurs.

 18.2.24 wTrackBar
wTrackBar
(

trackBarID, // Trackbar name (HLA id)
x, // x
y, // y
w, // width
h, // height
style, // Track bar style
onChange // On change handler

)

The trackBarID argument is the identifier name that HOWL uses in the wForm declaration for the track
bar object. This name must be unique within the wForm declaration.

The x, y, w, and h fields specify the coordinates and sizes for the bounding box surrounding the track
bar.

The style argument specifies the track bar style and is the logical-OR of zero or more of the following
constants:

w.TBS_HORZ Designates a horizontal track bar (this is the default).

w.TBS_TOP Display tick marks on the top of a horizontal track bar.

w.TBS_BOTTOM Display tick marks on the bottom of a horizontal track bar (default).

w.TBS_VERT Designates a vertical track bar.

w.TBS_LEFT Display tick marks on the left side of a vertical track bar.

w.TBS_RIGHT Display tick marks on the right side of a vertical track bar (default).
Page 516 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
w.TBS_BOTH Display tick marks on both sides of a track bar (vert or horz).

Note that all wTrackBar objects have the w.TBS_AUTOTICKS style.
The onChange argument is the name of a widgetProc that HOWL will call whenever there is a change

made to the scroll bar’s position.

 18.2.25 wUpDown
wUpDown
(

upDownID, // Up/down control object name
style, // No special format/style/alignment
x, // x
y, // y
w, // width
h, // height
min, // Minimum position
max, // Maximum position
initial, // Initial position
onUpDown // Click event handler

);

A wUpDown widget is a pair of arrow buttons that the user can click on to increment or decrement a value.
wUpDown objects are stand-alone (see wUpDownEditBox for a version that is connected to an edit box).

The upDownID field is an HLA identifier that HOWL uses as the name of the object on the form. This name
must be unique within the form class declaration.

The style argument is one of the following values:

UDS_ALIGNLEFT Positions the up-down control next to the left edge of the buddy
window. The buddy window is moved to the right and its width
decreased to accommodate the width of the up-down control. This style
is generally used only with the UDS_AUTOBUDDY style. See
wUpDownEditBox for additional details concerning buddy controls.

UDS_ALIGNRIGHT Positions the up-down control next to the right edge of the buddy
window. The width of the buddy window is decreased to accommodate
the width of the up-down control. This style is generally used only with
the UDS_AUTOBUDDY style. See wUpDownEditBox for additional details
concerning buddy controls.

UDS_ARROWKEYS Causes the up-down control to increment and decrement the position
when the UP ARROW and DOWN ARROW keys are pressed.

UDS_AUTOBUDDY Automatically selects the previous window in the Z order as the up-
down control's buddy window.

UDS_HORZ Causes the up-down control's arrows to point left and right instead of up
and down.

UDS_NOTHOUSANDS Does not insert a thousands separator between every three decimal
digits.

UDS_SETBUDDYINT Causes the up-down control to set the text of the buddy window (using
the WM_SETTEXT message) when the position changes. The text
consists of the position formatted as a decimal or hexadecimal string.

UDS_WRAP Causes the position to "wrap" if it is incremented or decremented
beyond the ending or beginning of the range.

The x, y, w, and h arguments specify the position and size of the wUpDown object on the form. HOWL
ignores these values if you specify a non-NULL buddy value; in that
case, HOWL uses the bounding box of the wEditBox object to control
the placement of the up/down arrows.
Released to the Public Domain Page 517

HLA Standard Library
The min argument specifies the minimum value that a wUpDown object will return. If the control’s current
value is equal to the min value and the user presses the down arrow, the wUpDown object will not decrement the
value.

The max argument specifies the maximum value that a wUpDown object will return. If the control’s current
value is equal to the max value and the user presses the up arrow, the wUpDown object will not increment the
value.

The initial argument specifies the initial value of the wUpDown object when the form is created.
The onUpDown argument is either NULL or specifies the name of a widgetProc procedure that HOWL

will call whenever the user presses an up or down arrow on the control. If this field is NULL, then HOWL will
not call a function whenever an up or down arrow is pressed and the application will have to call an appropriate
wUpDown method to retrieve the current value of the wUpDown control.

 18.2.26 wUpDownEditBox
wUpDownEditBox
(

upDownID, // Up/down control object name
style, // No special format/style/alignment
x, // x
y, // y
w, // width
h, // height
min, // Minimum position
max, // Maximum position
initial, // Initial position
onTextChange, // On Change event handler (edit box)
onUpDown // Click event handler (up/down arrow)

);

A wUpDown widget is a pair of arrow buttons that the user can click on to increment or decrement a value.
wUpDown objects can be stand-alone or they can be associated with a wEditBox object (the "buddy"). When a
wUpDown object is associated with a buddy wEditBox object, the arrows are connect to the edit box and clicking
on the up or down arrows produces a string in the wEditBox object representing the current value of the
wUpDown object.

The style argument is one of the following values:

UDS_ALIGNLEFT Positions the up-down control next to the left edge of the buddy
window. The buddy window is moved to the right and its width
decreased to accommodate the width of the up-down control.

UDS_ALIGNRIGHT Positions the up-down control next to the right edge of the buddy
window. The width of the buddy window is decreased to accommodate
the width of the up-down control.

UDS_ARROWKEYS Causes the up-down control to increment and decrement the position
when the UP ARROW and DOWN ARROW keys are pressed.

UDS_AUTOBUDDY Automatically selects the previous window in the Z order as the up-
down control's buddy window. This style shouldn’t be used with
wUpDownEditBox objects.

UDS_HORZ Causes the up-down control's arrows to point left and right instead of up
and down.

UDS_NOTHOUSANDS Does not insert a thousands separator between every three decimal
digits.

UDS_SETBUDDYINT Causes the up-down control to set the text of the buddy window (using
the WM_SETTEXT message) when the position changes. The text
consists of the position formatted as a decimal or hexadecimal string.

UDS_WRAP Causes the position to "wrap" if it is incremented or decremented
beyond the ending or beginning of the range.
Page 518 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
The x, y, w, and h arguments specify the position and size of the wUpDown object on the form. HOWL
ignores these values if you specify a non-NULL buddy value; in that case, HOWL uses the bounding box of the
wEditBox object to control the placement of the up/down arrows.

The min argument specifies the minimum value that a wUpDown object will return. If the control’s current
value is equal to the min value and the user presses the down arrow, the wUpDown object will not decrement the
value.

The max argument specifies the maximum value that a wUpDown object will return. If the control’s current
value is equal to the max value and the user presses the up arrow, the wUpDown object will not increment the
value.

The initial argument specifies the initial value of the wUpDown object when the form is created.
The onTextChange argument is either NULL or specifies the name of a widgetProc procedure that

HOWL will call whenever the user changes a value in the edit box control. If this field is NULL, then HOWL
will not call a function whenever the edit box changes and the application will have to call an appropriate
wUpDownEditBox method to retrieve the current value of the wUpDownEditBox’s edit box control. Note that
pressing an up or down error will cause a change to the edit box, which will call HOWL to call this function.

The onUpDown argument is either NULL or specifies the name of a widgetProc procedure that HOWL
will call whenever the user presses an up or down arrow on the control. If this field is NULL, then HOWL will
not call a function whenever an up or down arrow is pressed and the application will have to call an appropriate
wUpDown method to retrieve the current value of the wUpDown control.

 18.2.27 wTimer
wTimer
(

timerID, // Timer control object name
period, // Timeout value in milliseconds
timing, // Type of timer (wTimer_t.oneShot or wTimer_t.periodic)
onTimeOut // Timeout event handler

);

A wTimer widget creates a small background thread that calls the onTimeOut widget after some period of
time. Timers operate on one of two modes: oneShot or periodic. In the wTimer_t.oneShot mode , the
timer delays for at least the number of milliseconds specified by the period argument and then calls the
onTimeOut widgetProc exactly once. In the wTimer_t.periodic mode, the timer calls the onTimeOut
widgetProc once every period milliseconds.

Note that declaring a wTimer object in the HOWL declarative language does not actually start the timer
operating. It initializes the object, but you must call the wTimer_t.start method associated with the class to
actually begin the timing process. See the description of the wTimer_t class later in this document for more
details.

 18.2.28 wWindow..endwWindow
A wWindow object is a container. It specifies a rectangular area on a form that contains other objects. All the

widgets you declare between a wWindow statement and the corresponding endwWindow terminator will be
contained by the window (and can be treated as a whole) at run time.

wWindow
(

windowID, // HLA identifier
caption, // Window title (ignored unless style calls for title)
exStyle, // Extended style for window
style, // Windows’ style for window
x, // x position
y, // y position
w, // width
h, // height
bkgColor // RGB background color for window

)

<<Other widget declarations >>

endwWindow
Released to the Public Domain Page 519

HLA Standard Library
Page 520 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
18.3 The HOWL Run-time Library
Although the HOWL declarative language (the wForm..endwForm macro) makes it very easy to design

forms, your applications will need to interact with the HOWL run-time library code in order to make full use of
HOWL’s capabilities. This section of this document describes the run-time semantics of the HOWL library.

The first thing to note is that HOWL is an object-oriented library. Almost all HOWL data types and code are
part of the HOWL object hierarchy. So the best place to start when describing HOWL is with a description of the
object hierarchy.

HOWL contains a single base class, appropriately named wBase_t. All other objects in HOWL are derived
from this class. We’ll describe wBase_t completely in the next section, but the important thing to note is that
wBase_t is the root of the class hierarchy tree for HOWL.

As you should know from object-oriented programming, descendant (child/derived) classes inherit all the
fields of their base (parent/ancestor) classes. Therefore, all the classes in the HOWL object hierarchy inherit the
fields of the wBase_t class (and all other ancestor classes to that particular class). In the following sections that
describe each of the classes in the HOWL hierarchy, the descriptions will only discuss the fields that are specific
to a given class; this document assumes that you understand that each class will inherit fields from all the
ancestor classes and that you should look at the documentation for those ancestor classes in order to get the full
picture for each class.

Every HOWL object (that is derived from wBase_t) contains a special wType field. This is an lword (128-
bit) object that HOWL uses to maintain run-time type information about that particular object. This is an array of
128 bits that specify membership/absence from a particular class. When an application is given a generic pointer
to an object of any HOWL type (e.g., wBase_t), the application can test this array to see if that object is a
specific type (or is derived from a specific type). To accommodate this, HOWL defines a set of constants for
each of that HOWL class types (except wBase_t) that have the following names and functions:

• typename_b ("b" stands for "bit number") is a small integer number between zero and the
number of HOWL class types (less that 128) that associates a unique enumerated value with
each HOWL class type. This also provides an index into the wType bit array.

• typename_ps ("ps" stands for "power set") is a singleton set constant containing a "1" bit at
index typename_b with all other bits containing zero.

• typename_c ("c" stands for "constant") is a constant (up to 128 bits) with a "1" bit in each bit
position specifying whether typename is a descendant (or is) the type indicated by the
typename_b bit position into typename_c. For example, wProgressBar_c would contain set
bits in bit positions wProgressBar_b and wVisual_p because wProgressBar_t is derived
from wVisual_t. Because all HOWL objects are derived from wBase_t, there is no need to
set aside a bit position for wBase_t in wProgressBar_c. Note that typename_c is generated
via the logical-OR of typename_ps and all the ancestor class "_ps" values for typename_t.

The following diagram shows the HOWL object hierarchy. The nodes in gray are abstract classes; you do
not normally create objects of these types (generally, you only create objects of types derived from abstract base
classes).
Released to the Public Domain Page 521

HLA Standard Library
wBase_t

wMenuItem_t

wMenu_t

wFont_twVisual_t

wScrollBar_t wTrackBar_t wLabel_twProgressBar_t

wClickable_t

wSurface_t wListBox_t

wButton_t wUpDown_t

wCheckable_t wPushButton_t

wCheckBox3LT_t wCheckBoxLT_twCheckBox3_twCheckBox_t

wRadioButton_t wRadioButtonLT_t wRadioSetButton_t wRadioSetButtonLT_t

wComboBox_t wDragListBox_t

wIcon_t wBitmap_twFilledFrame_t

wEllipse_t wPie_t wPolygon_t wRectangle_t

wRoundRect_twContainer_t

wTabs_t wRadioSet_t wGroupBox_t window_t

wForm_t

wView_t

wabsEditBox_t

wEditBox_t wPasswdBox_t wTextEdit_t wUpDownEditBox_t
Page 522 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 18.3.1 Private Data Fields
Many HOWL classes contain private data fields. Although HLA will not prevent you from accessing these

private data fields, application programmers should avoid direct access of these private fields. Access to the
private data fields is intended for use by HOWL functions only.

For those data fields whose values might be of interest to a HOWL application programmer, the HOWL
library generally provides accessor ("getter") and mutator ("setter") functions that let you access these private
fields. You should always attempt to use these accessor/mutator functions for all private data access. Reading the
values of some private fields (by calling the accessor functions) may cause HOWL to make a Win32 API call to
make the value consistent with Windows; writing to a private data field (via a mutator) may cause HOWL to
execute some additional code to tell Windows (or the rest of HOWL) about the change. Reading and writing
these private data fields directly may circumvent these actions that keep HOWL’s internal data structures
consistent.

The private fields in a class are easily distinguished in the howl.hhf header file; the header collects all
private data fields into record variables within the classes that have a "_private" suffix. Unless you are writing a
class that is an extension of the HOWL library, you should not directly access these fields.

 18.3.2 Abstract Classes
The HOWL class hierarchy contains several abstract base classes that combine features common to various

concrete classes. The following subsections describe each of these base classes.

 18.3.2.1 wBase_t
The wBase_t class is the root class of the entire HOWL hierarchy. This class has the following definition:

 wBase_t:
 class

 var
 handle :dword;
 _name :string;
 wType :lword;

 wBase_private:
 record

 visible :boolean;
 enabled :boolean;
 onHeap :boolean;
 align(4);

 objectID :dword;
 nextWidget :wBase_p;

 // Pointer the wForm object that this
 // object belongs to.

 parentForm :wForm_p;

 // Handle of the Windows parent window associated
 // with this control. Note that parentForm.handle
 // may not be the same as parentHandle because this
 // object could belong to some other window that
 // is a child window of the main form. (Okay, parentForm
 // was probably a bad name to use).

 parentHandle :dword;

Released to the Public Domain Page 523

HLA Standard Library

 endrecord;

 static
 objectID_g :dword; external("objectID_object_t");

 // Constructors/Destructors:

 procedure create_wBase
 (
 wbName :string
); external;

 method destroy; external;
 method show; external;
 method hide; external;
 method enable; external;
 method disable; external;

 // Accessor/mutator functions:

 method get_handle; @returns("eax"); external;
 method get_objectID; @returns("eax"); external;
 method get_visible; @returns("al"); external;
 method get_enabled; @returns("al"); external;
 method get_onHeap; @returns("al"); external;
 method get_parentHandle; @returns("eax"); external;
 method get_parentForm; @returns("eax"); external;

 method set_onHeap(onHeap:boolean); external;
 method set_parentHandle(parentHandle:dword); external;
 method set_parentForm(parentForm:wForm_p); external;

 // Default message processor:

 method processMessage
 (
 hwnd :dword;
 uMsg :dword;
 wParam :dword;
 lParam :dword
); external;

 endclass;

objectID_g This is a static field that HOWL uses to dynamically assign unique Windows identifiers to
objects. Applications should not reference this field; they must not modify the value of
this field. HOWL automatically increments this field whenever you create an instance of
some HOWL object.

wType The wType field is a 128-bit bit array that provides run-time type information about an
object to the application. If you test bit position typename_b in the wType field, you can
determine if the current object is derived from (or is) type typename. The howl.hhf header
file defines typename_b constants for all the HOWL types (subsituting the appropriate
type name, such as wButton_t, for typename). This is a public field for read-only access.
Applications must never modify its value.

handle Almost all HOWL objects have a Windows handle associated with them. The handle
field contains this value. Technically, handle ought to be a private data field (there is even
an accessor function for it), however, because applications need to frequently access this
Page 524 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
field, it was made public. Note, however, that an application should never write data to
this field.

_name This field is a string representation of the object’s name in the main form. This field is
mainly useful for testing, debugging, and tracing purposes. Other than initializing this
string pointer, the HOWL library doesn’t access this field at all, so an application is free to
use this field however it wants.

visible This boolean variable contains true if the object is a wVisual_t object and is visible on
the form. It contains false if the object is not visible. If the object isn’t a wVisual_t (or
descendant) object, then this field’s value is meaningless. This is a private field, always
use the accessor function to retrieve its value. Applications must never directly change the
value of this field.

enabled This boolean variable contains true if the object is a wVisual_t object and is enabled on
the form. It contains false if the object is not enabled. If the object isn’t a wVisual_t (or
descendant) object, then this field’s value is meaningless. This is a private field, always
use the accessor function to retrieve its value. Applications must never directly change the
value of this field.

onHeap This field contains true if the object’s storage is allocated on the heap. It contains false if
the object’s storage is not allocated on the heap. If you initialize an object in storage that is
not on the heap, it is your responsibility to set this field to false. If you create an object and
request heap allocation for it (by calling a class procedure constructor with ESI equal to
zero), the HOWL constructors will automatically set this field to true. This is a private
field, always use the accessor function to retrieve its value. Applications must never
directly change the value of this field.

objectID The objectID field contains the specific Windows ID (if applicable) for the current
object. The create method for an object generally copies the global objectID_g value to
this field and then increments the global value to generate unique ID values for each
object. For the most part, HOWL ignores this field (it identifies objects by the pointer to
the object rather than by the Windows ID). This is a private field, always use the accessor
function to retrieve its value. Applications must never directly change the value of this
field.

nextWidget wContainer_t objects use this field to create a linked list of widgets contained by the
container object. All objects created via the HOWL declarative language (except the
wForm object) are contained by some object (e.g., the wForm object). However, it is
possible to dynamically instantiate objects that are not contained by a form, and the form
object itself isn’t contained by another container, so you cannot assume that this field
contains a valid value unless you iterator across the widgets of a container object. This is a
private data field, no application program access is legal.

parentForm This is a pointer to the wForm object that holds the current widget. Note that this is the
actual object pointer, not the form’s handle. This is a private field, always use the
accessor/mutator functions to read/write its value.

parentHandle This is the window handle of the Windows’ object on which the current widget is a child
control. This is a private field, always use the accessor/mutator functions to read or write
its value.

create_wBase The create_wBase procedure is the constructor for the class. Because wBase_t is an
abstract class, you never instantiate objects of type wBase_t. Unless you are writing a
constructor for a new class you’ve derived from wBase_t, you will probably never call
this constructor. This constructor is responsible for setting up the object’s _name field
(passed as an argument), setting up the ObjectID field, and initializing all the other fields
to reasonable default values (that the derived classes’ constructors will probably
overwrite).

destroy This is the base level destructor function. You do not generally call this method directly;
instead, a higher-level destructor function will probably call this function when you
Released to the Public Domain Page 525

HLA Standard Library
invoke destroy on some object. The wBase_t.destroy method checks the onHeap field
and will deallocate the storage associated with the object if the storage was allocated on
the heap.

show,

hide These two methods simply store true (show) or false (hide) into the visible field. Other
than that, they do nothing. They are included in wBase_t just to allow code to show and
hide all objects. Generally, wBase_t descendant classes (usually wVisual_t
descendants) override these methods to show or hide a visual object on the screen.

enable,

disable These two methods store true (enable) or false (disable) into the enabled field.. Other
than that, they do nothing. They are included in wBase_t just to allow code to enable and
disable objects. Generally, wBase_t descendant classes (usually wVisual_t
descendants) override these methods to enable or disable a visual object on the screen.

get_handle,

get_objectID,

get_visible,

get_enabled,

get_onHeap,

get_parentHandle

get_parentForm These are "accessor" functions that retrieve the value of the associated class field. As a
general rule you should always call the accessor function to retrieve an object’s data field
values as the accessor might contain code to "condition" those values prior to consumption

set_onHeap This is a "mutator" function that lets an application write a value to the onHeap field.
Applications should always call this mutator rather than writing directly to the onHeap
field because their might be code in the mutator that does additional processing required
by the class.

set_parentHandle

This is a "mutator" function that lets an application write a value to the parentHandle
field. Applications should be very careful about writing to this field. The only time an
application should write to parentHandle is when it dynamically creates a new object at
run-time (or, in the rare case of moving a widget from one form to another).

set_parentForm This is a "mutator" function that lets an application write a value to the parentForm field.
Applications should be very careful about writing to this field. The only time an
application should write to parentHandle is when it dynamically creates a new object at
run-time (or, in the rare case of moving a widget from one form to another).

processMessage The processMessage method is used by HOWL to do default Windows message
processing when no other object handles a message sent from Windows. This is a
Windows callback function and you should never call it directly unless you’re extending
HOWL by added new classes (and you wind up calling this code from the
processMessage function in your new class). See the HOWL source code for more
details on this function.

 18.3.2.2 wVisual_t
The wVisual_t class, derived from wBase_t, contains the basic information that all visual objects (that is,

those appearing on a form) possess. Of course, as wVisual_t is derived from wBase_t, all wVisual_t objects
include all the fields from the wBase_t type.

 wVisual_t:
 class inherits(wBase_t);

 var
Page 526 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 align(4);
 wVisual_private:
 record

 x :dword;
 y :dword;
 width :dword;
 height :dword;
 bkgColor :dword;
 bkgBrush :dword;
 style :dword;
 exStyle :dword;

 endrecord;

 // Constructors/Destructors:

 procedure create_wVisual
 (
 wvName :string;
 parentHandle :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword
); external;

 // Accessor functions:

 method get_x; @returns("eax"); external;
 method get_y; @returns("eax"); external;
 method get_width; @returns("eax"); external;
 method get_height; @returns("eax"); external;
 method get_bkgColor; @returns("eax"); external;
 method get_style; @returns("eax"); external;
 method get_exStyle; @returns("eax"); external;

 method set_x(x:dword); external;
 method set_y(y:dword); external;
 method set_width(width:dword); external;
 method set_height(height:dword); external;
 method set_bkgColor
 (
 bkgColor:dword
); external;

 method move(x:dword; y:dword); external;
 method resize(width:dword; height:dword); external;

 method setFocus; external;

 override method show; external;
 override method hide; external;
 override method enable; external;
 override method disable; external;
 override method destroy; external;

Released to the Public Domain Page 527

HLA Standard Library
 method onClose; external;
 method onCreate; external;

 endclass;

x, y, width,

height These fields form a bounding rectangle into which the object will appear. These are
private data fields. HOWL applications should use the accessor/mutator functions to
change their values.

bkgColor This field holds an RGB value representing the background color for the window defined
by the wVisual_t object. Never access this field directly; always use the accessor/
mutator functions so that HOWL can properly update the private bkgBrush field. Note all
objects derived from the wVisual_t class use this field,those objects that do not simply
ignore its value.

bkgBrush This is the brush that Windows uses to paint the background color for the wVisual_t
object. Note that this is a private field and applications should never access it. HOWL
computes the value for this field from the bkgColor field. Note all objects derived from
the wVisual_t class use this field,those objects that do not simply ignore its value.

style This is the window style used for various window objects. Not all wVisual_t objects make
use of this field.

exStyle This is the window extended style used for various window objects. Not all wVisual_t
objects make use of this field.

create_wVisual This is the constructor for the class. Because this is an abstract base class, you must never
call this function with ESI containing NULL. In general, you will never directly call this
function unless you are creating your own HOWL classes. Whenever you call the
constructor for a concrete HOWL class, it will automatically call this constructor for you.

get_x,

get_y,

get_width,

get_height,

get_bkgColor

get_style,

get_exStyle

These are the "accessor" functions for this class. You should call these functions to
retrieve any data fields for the object.

set_x,

set_y,

set_width,

set_height,

set_bkgColor

set_style

set_exStyle These are the "mutator" functions for the class. You must call these functions rather than
storing values directly into the data fields for the object. These function do additional
work that is necessary for the system (such as redrawing objects when you change their
possition or size).

move This is a combination of set_x and set_y rolled into a single convenient package (which
causes less redraw flashing on the screen versus making the two separate calls).

resize This is a combination of set_width and set_height rolled into a single convenient package
(which causes less redraw flashing on the screen versus making the two separate calls).
Page 528 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
show, hide These methods make a visual object visible (show) or invisible (hide) on the form. These
methods are also responsible for updating the object’s visible field.

enable, disable These methods enable or disable (gray) an object on the form. Note that not all visual
objects can be enabled or disabled. Those that cannot be disabled simply ignore calls to
these methods.

set_focus This method changes the window focus to the current object.

onCreate,

onClose These methods are intended for internal use by the HOWL system. You should never call
them directly.

 18.3.2.3 wClickable_t
The wClickable_t type is an abstract base class derived from wVisual_t that contains fields and code

associated with objects that the user can click on (with the mouse) on the form. This class inherits all the fields
from wVisual_t. This class handles both single-click and double-click events. Some objects don’t support
double-clicking, in which case the double-click facilities wind up being unused.4

 wClickable_t:
 class inherits(wVisual_t);
 var
 align(4);
 wClickable_private:
 record

 onClick :widgetProc;
 onDblClick :widgetProc;

 endrecord;

 procedure create_wClickable
 (
 wcName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 method get_onClick; @returns("eax"); external;
 method get_onDblClick; @returns("eax"); external;

 method set_onClick(onClick :widgetProc); external;
 method set_onDblClick(onDblClick :widgetProc); external;
 method click; external;

 endclass;

4. Technically, this class should have been split into two classes: wSingleClickable_t and wDoubleClickable_t (derived
from wSingleClickable_t) and derived classes that don’t support double-clicking would simply be derived from
wSingleClickable_t. However, it’s probably a bit more efficient to implement the single class and ignore double-click
operations if they aren’t used.
Released to the Public Domain Page 529

HLA Standard Library
onClick This is a pointer to a widgetProc procedure that HOWL will call when the user clicks on
a wClickable_t object. This field must either contain NULL (meaning HOWL will
ignore the click operation) or the address of a widgetProc procedure.

onDblClick This is a pointer to a widgetProc procedure that HOWL will call when the user double-
clicks on a wClickable_t object. If this field contains NULL, then HOWL disables the
double-click operation. Note that not all wClickable_t objects support double-clicking,
so this field may be ignored by HOWL. Also note that if the user double-clicks on an
object (that supports double clicking) and both the onClick and onDblClick fields contain
non-NULL values, HOWL will call the onClick widgetProc procedure twice and the
onDblClick widgetProc procedure once.

create_wClickable

This is the class constructor. Applications will not normally call this procedure (the
constructors for derived classes will call this procedure).

get_onClick,

get_onDblClick These methods return the value of the onClick and onDblClick data fields. Application
programs should always call these "accessor" functions rather than directly accessing
these fields.

set_onClick,

set_onDblClick These "mutator" functions set the value of the onClick and onDblClick data fields.

click This method simulates a click on the current object’s button.

 18.3.2.4 wButton_t
The wButton_t type is an abstract class that contains common fields for all the button, checkbox, and radio

button class types. This class is derived from wClickable_t, so it inherits all the wClickable_t fields.

 wButton_t:
 class inherits(wClickable_t);

 var
 align(4);
 wButton_private:
 record

 onPaint :widgetProc;
 onHilite :widgetProc;
 onUnHilite :widgetProc;
 onDisable :widgetProc;
 onSetFocus :widgetProc;
 onKillFocus :widgetProc;

 endrecord;

 procedure create_wButton
 (
 wbName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
Page 530 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
); external;

 method get_onPaint; @returns("eax"); external;
 method get_onHilite; @returns("eax"); external;
 method get_onUnHilite; @returns("eax"); external;
 method get_onDisable; @returns("eax"); external;
 method get_onSetFocus; @returns("eax"); external;
 method get_onKillFocus; @returns("eax"); external;

 method set_onPaint (onPaint :widgetProc); external;
 method set_onHilite (onHilite :widgetProc); external;
 method set_onUnHilite (onUnHilite :widgetProc); external;
 method set_onDisable (onDisable :widgetProc); external;
 method set_onSetFocus (onSetFocus :widgetProc); external;
 method set_onKillFocus (onKillFocus:widgetProc); external;

 method get_text(txt:string); external;
 method a_get_text; external;
 method set_text(txt:string); external;

 override method processMessage; external;

 endclass;

onPaint This is a pointer to a widgetProc procedure that HOWL will call whenever the button is
painted on the screen. If this pointer contains NULL, HOWL does not call any user-
defined onPaint procedure. On older versions of Windows this notification was used for
owner-drawn buttons. Newer versions of Windows use the "owner drawn" style for this
purpose. By default, the wButton_t.create_wButton constructor initializes this field
with NULL.

onHilite This is a pointer to a widgetProc that HOWL will call (if the pointer is non-NULL)
when a button is first pressed. On older versions of Windows, this was used to draw the
button in a special depressed state. In HOWL, you can use this event to trigger some
operation when the button is first clicked. By default, the wButton_t.create_wButton
constructor initializes this field with NULL.

onUnHilite This is a pointer to a widgetProc that HOWL will call (if the pointer is non-NULL)
when a button is released. On older versions of Windows, this was used to draw the
button in a normal non-depressed state. In HOWL, you can use this event to trigger some
operation when the button is released. By default, the wButton_t.create_wButton
constructor initializes this field with NULL.

onDisable This is a pointer to a widgetProc that HOWL will call (if the pointer is non-NULL)
when a button is disabled. On older versions of Windows, this was used to draw the
button in a disabled state. In HOWL, you can use this event to trigger some operation
when the button is disabled. By default, the wButton_t.create_wButton constructor
initializes this field with NULL.

onSetFocus This is a pointer to a widgetProc that HOWL will call (if the pointer is non-NULL)
when focus is shifted to the button. By default, the wButton_t.create_wButton
constructor initializes this field with NULL.

onKillFocus This is a pointer to a widgetProc that HOWL will call (if the pointer is non-NULL)
when focus is shifted away from the button. By default, the
wButton_t.create_wButton constructor initializes this field with NULL.

Note that wButton_t objects inherit the remaining button notification functions, onClick and
onDblClick, from the wClickable_t class.
Released to the Public Domain Page 531

HLA Standard Library
create_wButton The create_wButton procedure is the constructor for this class. Like all the constructors
in HOWL abstract classes, user application do not normally call this constructor directly;
constructors in derived classes will call this procedure.

get_onPaint,

get_onHilite,

get_onUnHilite,

get_onDisable,

get_onSetFocus,

get_onKillFocus These are accessor functions that return the values of the corresponding widgetProc
function pointers. Note that the create_wButton construction initializes all these
pointers to NULL when an object is first created.

set_onPaint,

set_onHilite,

set_onUnHilite,

set_onDisable,

set_onSetFocus,

set_onKillFocus These are the mutator functions that let you set the addresses of the event handler
functions for this class.

get_text This function retrieves the caption text for a button and stores that text into the string
passed as a parameter to this function. The string you pass to this function must have
sufficient storage allocated for it to hold the caption or this function will raise an
ex.StringOverflow exception.

a_get_text This function makes a copy of the button’s caption on the heap and returns a pointer to this
string in the EAX register. It is the caller’s responsibility to free the storage associated
with this string when it is done using the string data.

set_text This function changes the button’s caption text to the string value you pass as an
argument.

processMessage This is an internal HOWL function. User applications do not call this method.

 18.3.2.5 wCheckable_t
The wCheckable_t class is an abstract base class for button objects that are "checkable". This includes the

various check boxes and radio buttons.

 wCheckable_t:
 class inherits(wButton_t);

 procedure create_wCheckable_t
 (
 wchkName :string;
 caption :string;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 method set_check(state:dword); external;
 method get_check; @returns("eax"); external;

Page 532 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 endclass;

create_wCheckable

 The procedure is the constructor for this class. Like all abstract base class constructors,
applications should not call this procedure. The constructors for concrete classes will
make calls to this constructor as appropriate.

get_check This method retrieves the current state of the checkable button. It returns true in EAX if
the button is checked, false if the button is not checked.

set_check This method sets the current state of the checkable button. If the single argument contains
true, the button will be checked; if the argument contains false, the button will be
unchecked.

 18.3.2.6 wSurface_t
The wSurface_t abstract base class represents a single "window" on a form onto which HOWL can draw

things. This abstract class, for example, is the base class for graphic objects like rectangles as well as HOWL
views and windows. wSurface_t objects are clickable (as this class inherits the wClickable_t class).

 wSurface_t:
 class inherits(wClickable_t);

 var
 align(4);
 wSurface_private:
 record

 // onPaint event pointer:

 onPaint :widgetProc;

 endrecord;

 procedure create_wSurface
 (
 wsName :string;
 exStyle :dword;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 bkgColor :dword;
 visible :boolean
); external;

 override method destroy; external;
 override method processMessage; external;
 override method onClose; external;
 override method onCreate; external;

 method get_onPaint; @returns("eax"); external;
 method set_onPaint(onPaint:widgetProc); external;

 endclass;
Released to the Public Domain Page 533

HLA Standard Library
onPaint This widgetProc pointer is either NULL or points at a procedure that HOWL will call
when it receives a w.WM_PAINT message for the surface.

create_wSurface The create_wSurface procedure is the constructor for the wSurface_t class. Like all
abstract base class constructors, applications will not directly call this procedure -- the
derived class constructors are the ones that will call this procedure.

destroy The destroy method is responsible for freeing up the storage associated with the object
and the _bkgBrush system resource when an application is done using a wSurface_t
object. Normally, applications will not directly call this destructor. Instead, derived class
destructor methods will call this method when they are destroyed.

processMessage,

onClose,

onCreate These are private methods used by HOWL. Application programs should not call these
methods.

get_onPaint,

set_onPaint These are the accessor/mutator functions that get/set the address of the onPaint event-
handling widgetProc.

 18.3.2.7 wFilledFrame_t
The wFilledFrame_t abstract base class is used for objects that contain graphic entities drawn with a line

and filled with an interior color. This includes objects such as rectangles, ellipses, and round rectangles. This
extends the wSurface_t type by adding a line drawing color and a fill color (on top of the background color
provided by wSurface_t).

 wFilledFrame_t:
 class inherits(wSurface_t);
 var
 align(4);
 wFilledFrame_private:
 record

 lineColor :dword;
 fillColor :dword;

 _linePen :dword;
 _lineBrush :dword;
 _fillBrush :dword;

 endrecord;

 procedure create_wFilledFrame
 (
 wrName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 lineColor :dword;
 fillColor :dword;
 bkgColor :dword
); external;

 method get_fillColor; @returns("eax"); external;
 method get_lineColor; @returns("eax"); external;

Page 534 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 method set_fillColor(fillColor:dword); external;
 method set_lineColor(lineColor:dword); external;

 override method destroy; external;
 override method processMessage; external;

 endclass;

lineColor This is the RGB color of the pen used to draw the outline of the graphic object.
Applications must not access this field directly but should, instead, use the accessor/
mutator functions because those function maintain the private _linePen and
_lineBrush fields as well.

fillColor This is the RGB color of the brush used to fill the interior of the graphic object.
Applications must not access this field directly but should, instead, use the accessor/
mutator functions because those function maintain the private _fillBrush field as well.
Note that the fillColor differs from the background color (inherited from
wSurface_t) in that the fill color paints the interior of the graphic object while the
background color paints the exterior of the graphic object (within the bounding rectangle).

_linePen,

_lineBrush,

_fillBrush These are private fields in the class that applications must not access. These fields are
automatically maintained by HOWL whenever you call one of the wFilledFrame_t
mutator functions.

create_wFilledFrame

This is the constructor for the wFilledFrame_t class. Like other abstract base classes, you
do not call this constructor directly, the derived classes’ constructions will call this
constructor for you.

destroy This is the destructor for the class. It frees up storage allocated for an object and frees up
the system brush resources created for the object. Applications do not normally call this
destructor directly; derived class destructors will call this destructor automatically.

get_lineColor

get_fillColor,

set_fillColor,

set_lineColor These are the accessor and mutator functions for the wFilledFrame_t data fields. You
must always call these functions to access the data fields of this class because these
functions also maintain the private pen and brush fields for this class.

 18.3.2.8 wabsEditBox_t
The wabsEditBox_t class is the abstract base class used by the classes that support textual input from the

user (e.g., wEditBox_t, wPasswdBox_t, and wTextEdit_t). Edit boxes (and text editors) are among the
more feature-rich controls provided by Windows, so it’s not surprising that there are many fields and functions
associated with this base class.

 wabsEditBox_t:
 class inherits(wVisual_t);

 var
 align(4);
 wabsEditBox_private:
 record

Released to the Public Domain Page 535

HLA Standard Library
 onChange :widgetProc;
 onErrSpace :widgetProc;
 onHScroll :widgetProc;
 onVScroll :widgetProc;
 onMaxText :widgetProc;
 onUpdate :widgetProc;
 onSetFocus :widgetProc;
 onKillFocus :widgetProc;
 textColor :dword;

 endrecord;

 procedure create_wabsEditBox
 (
 webName :string;
 initialTxt :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 style :dword;
 onChange :widgetProc
); external;

 method get_onChange; @returns("eax"); external;
 method get_onErrSpace; @returns("eax"); external;
 method get_onHScroll; @returns("eax"); external;
 method get_onMaxText; @returns("eax"); external;
 method get_onUpdate; @returns("eax"); external;
 method get_onSetFocus; @returns("eax"); external;
 method get_onKillFocus; @returns("eax"); external;

 method set_onChange (onChange :widgetProc); external;
 method set_onErrSpace (onErrSpace :widgetProc); external;
 method set_onHScroll (onHScroll :widgetProc); external;
 method set_onMaxText (onMaxText :widgetProc); external;
 method set_onUpdate (onUpdate :widgetProc); external;
 method set_onSetFocus (onSetFocus :widgetProc); external;
 method set_onKillFocus (onKillFocus:widgetProc); external;

 method get_textColor; @returns("eax"); external;

 method set_textColor(textColor:dword); external;

 method undo; external;
 method cut; external;
 method copy; external;
 method paste; external;
 method clear; external;

 method get_canUndo; @returns("eax"); external;
 method emptyUndoBuffer; external;

 method get_modified; @returns("eax"); external;
 method set_modified(modified:boolean); external;

 method get_text(txt:string); external;
 method a_get_text; @returns("eax"); external;
 method set_text(txt:string); external;
Page 536 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 method get_length; @returns("eax"); external;

 method get_selectedText(txt:string); external;
 method a_get_selectedText; @returns("eax"); external;

 method get_selection
 (
 var startPosn :dword;
 var endPosn :dword
); external;

 method set_selection
 (
 startPosn :dword;
 endPosn :dword
); external;

 method replace_selection
 (
 replacement :string;
 canUndo :boolean
); external;

 override method processMessage; external;

 endclass;

onChange This is a widgetProc pointer that HOWL will call (if it is not NULL) whenever any
change is made to the text associated with the control. Note that HOWL will call this
function after the update is drawn to the screen.

onErrSpace This is a widgetProc pointer that HOWL will call (if it is not NULL) if Windows cannot
allocate sufficient storage to handle the current editor operator.

onHScroll This is a widgetProc pointer that HOWL will call (if it is not NULL) whenever the user
clicks on the control’s horizontal scroll bar. Note that HOWL will call this function before
the update is drawn to the screen.

onVScroll This is a widgetProc pointer that HOWL will call (if it is not NULL) whenever the user
clicks on the control’s vertical scroll bar. Note that HOWL will call this function before
the update is drawn to the screen.

onMaxText This is a widgetProc pointer that HOWL will call (if it is not NULL) whenever the user
exceeds the maximum number of character for the edit control.

onUpdate This is a widgetProc pointer that HOWL will call (if it is not NULL) whenever any
change is made to the text associated with the control. Note that HOWL will call this
function before the update is drawn to the screen (this is the crucial difference between
this function and the onChange handler).

onSetFocus This is a widgetProc pointer that HOWL will call (if it is not NULL) whenever focus
shifts to the edit control.

onKillFocus This is a widgetProc pointer that HOWL will call (if it is not NULL) whenever focus
shifts away from the edit control.

textColor This is the RGB color that Windows will use to draw the text on the editbox. This is a
private data field; applications should only access this value using the associated access
and mutator. The constructor initializes the text color to black.

get_onChange,

set_onChange,
Released to the Public Domain Page 537

HLA Standard Library
get_onErrSpace,

set_ onErrSpace,

get_onHScroll,

set_onHScroll,

get_onVScroll,

set_onVScroll,

get_onMaxText,

set_onMaxText,

get_onUpdate,

set_onUpdate,

get_onSetFocus,

set_onSetFocus,

get_onKillFocus,

set_onKillFocus These are the accessor and mutator functions for all the data fields specific to this abstract
base class. Applications should call these functions to access the data fields rather than
accessing them directly.

canUndo This function returns true in EAX if it is possible to undo the last operation to the editBox
buffer (via the undo method).

emptyUndoBuffer This method clears the undo buffer and sets the canUndo flag to false.

undo,

cut,

copy,

paste,

clear These methods perform the standard Windows editing functions on the current selection
in an edit control. Normally, you’d call these functions when the user selects an
appropriate "edit" menu entry or they press one of the standard accelerator keys (e.g.,
"control-C" for copy).

get_text This function retrieves the string (text) associated with an editor control and stores the text
into the string argument passed as the parameter. The string passed as an argument must
be large enough to hold the text or this function will raise an ex.StringOverflow exception.

a_get_text This function retrieves the string (text) associated with an editor control and stores the text
into a string allocated on the heap. It is the caller’s responsibility to free the storage
associated with this string when it is done using it. This function returns a pointer to the
new string in the EAX register.

set_text This function replaces the text in the edit control with the string passed as an argument.

get_length This function returns the current number of characters in the string associated with the edit
control.

get_selection This function retrieves the starting and ending zero-based indexes into the string of the
current text selection of the edit control. These indexes are returned in the two arguments
passed by value. Note that the ending index will contain the offset to the character just
beyond the selection in the edit control.

set_selection This function sets the starting and ending indexes for the edit control.

replace_selection

This function replaces the selected text in the editBox with the string you supply as the
argument.

get_textColor,

set_textColor These accessor/mutator functions get and set the text color that the widget uses.

processMessage This is a private method in the wabsEditBox_t class. Applications should not directly
call this method.
Page 538 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 18.3.2.9 wContainer_t
The wContainer_t abstract base class, as its name suggests, is a special class that can contain other

widgets. Containers possess a special linked list of wBase_t objects and the wContainer_t provides methods to
manipulate this list of objects. Classes derived from wContainer_t include form classes, windows, radio sets,
and group boxes.

 wContainer_t:
 class inherits(wVisual_t);

 var
 align(4);
 wContainer_private:
 record

 numWidgets :uns32;
 widgetList :wVisual_p;
 lastWidget :wVisual_p;

 endrecord;

 procedure create_wContainer
 (
 wcName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword
); external;

 override method destroy; external;
 override method show; external;
 override method hide; external;
 override method enable; external;
 override method disable; external;

 method get_numWidgets; @returns("eax"); external;
 method insertWidget(theWidget:wBase_p); external;
 method findWidget(objectID:dword); external;
 iterator widgetOnForm(nestingLevel:uns32); external;
 iterator widgetsJustOnForm; external;

 endclass;

numWidgets This is the number of widgets contained by the wContainer_t object. The constructor
initializes this field to zero and inserting widgets into the container increments this field
by one. This is a private field; use the get_numWidgets method to retrieve this field’s
value. Applications should never store a value directly into this field.

widgetList This is a pointer to the first item in the list of widgets contained by the wContainer_t
object. This is a private field; applications should never access this field.

lastWidget This is a pointer to the last item in the list of widgets contained by the wContainer_t
object. This is a private field; applications should never access this field.
Released to the Public Domain Page 539

HLA Standard Library
destroy This method iteratively calls the destructor for all widgets contained by the
wContainer_t object and then it frees the storage held by the container object itself.
Because wContainer_t is an abstract base class, applications should not call this
destructor directly. Instead, they will call the destructor for some derived class which will
indirectly call this method. Imporant note: because a container automatically calls the
destructor for all widgets contained by the container, an application must not explicitly
call the destructor for any of those widgets.

show This method iteratively calls all the show methods for each of the widgets contained by
the container. Because wContainer_t is an abstract base class, applications should not
call this method directly. Instead, they will call the show method for some derived class
which will indirectly call this method.

hide This method iteratively calls all the hide methods for each of the widgets contained by
the container. Because wContainer_t is an abstract base class, applications should not
call this method directly. Instead, they will call the hide method for some derived class
which will indirectly call this method.

enable This method iteratively calls all the enable methods for each of the widgets contained by
the container. Because wContainer_t is an abstract base class, applications should not
call this method directly. Instead, they will call the enable method for some derived class
which will indirectly call this method.

disable This method iteratively calls all the disable methods for each of the widgets contained
by the container. Because wContainer_t is an abstract base class, applications should
not call this method directly. Instead, they will call the disable method for some derived
class which will indirectly call this method.

get_numWidgets This method returns the value of the numWidgets field in the EAX register. Note that
there is no corresponding "set_numWidgets" mutator function; applications cannot
directly set the value of this field, wContainer_t objects increment the value of this field
by calling the insertWidget method.

insertWidget This method inserts a widget into the wContainer_t’s linked list. The argument is a
pointer to a wVisual_t object (or some object type derived from wVisual_t). Widgets
are inserted into the linked list at the end of the list (i.e., after the widget pointed at by
lastWidget). As this is being written, there is no way to remove a widget from a
wContainer_t’s widget list. This restriction may be relaxed in a future version of
HOWL.

findWidget This function searches for a widget in the wContainer_t’s widget list. The single
argument is the ObjectID value (inherited from wBase_t) of the object to search for.
This function is mainly useful for various Windows callback functions (message handlers)
that pass along a widgets object identifier without specifying the object itself.

widgetOnForm This is an HLA iterator (that you use in an HLA foreach loop) that iterates over all the
widgets in a container’s widget list. This iterator is recursive. This means that if one of the
items in a widget list is a wContainer_t class (or a class derived from wContainer_t),
then the iterator will drill down into that container and return its list of widgets as well. For
example, the wContainer_t destroy, show, hide, enable, and disable
methods all use this iterator to process all the widgets held by the container. On each
iterator of the foreach loop, this iterator returns a pointer to the current widget in the EAX
register.

widgetsJustOnForm

This iterator is very similar to widgetOnForm except that it is not recursive. On each
iteration of the foreach loop it will return an entry from the current container’s widget list.
It will not recursively process the lists of any wContainer_t objects appearing in the
current container.
Page 540 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 18.3.3 Containers
There are five main (concrete) container objects in HOWL: wForm_t objects, window_t objects,

wGroupBox_t objects, wTabs_t objects, and wRadioSet_t objects. We’ll consider the first three of these
objects in this section (plus menu objects, because it makes sense to discuss menus along with wForm_t objects)
and wRadioSet_t objects in the section on buttons.

 18.3.3.1 Forms and Menus
The main form for an application is a wForm_t object. Most applications will have a single wForm_t object,

though a multi-window application can certainly support two or more wForm_t windows. A wForm_t menu is
special (compared, say, to a wTabPage_t object) because it supports a menu. In a sense, a wForm_t object is a
double container because it can contain an arbitrary list of widgets and it can contain a list of menu items.

 18.3.3.1.1 wForm_t
The wForm_t class type is a window_t object with the addition of a list of menu items (which may be

empty). The wForm statement in the HOWL declarative language defines a class that is derived from wForm_t.
The wForm statement inserts the widget declarations into this new class and creates a constructor for the new
class. Therefore, wForm_t is the basis for all forms created with the HOWL declarative language. Technically,
wForm_t is a concrete class , not an abstract class, (meaning you can create objects of type wForm_t). However,
in most HOWL applications your main window will actually consist of an object whose type is derived from
wForm_t (the wForm..endwForm declaration creates this class for you).

 wForm_t:
 class inherits(window_t);
 var
 align(4);
 wForm_private:
 record

 menuList :wMenuItem_p;

 endrecord;

 procedure create_wForm
 (
 wwName :string;
 caption :string;
 exStyle :dword;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 fillColor :dword;
 visible :boolean
); external;

 method appendMenuItem(mi:wMenuItem_p); external;
 override method insertWidget; external;
 override method processMessage; external;

 endclass;

menuList This is a private data field that points at the list of menu items for the wForm_t’s menu.
Applications should not access this field.
Released to the Public Domain Page 541

HLA Standard Library
create_wForm This is the constructor for wForm_t objects. If you call this procedure using the
classname, e.g., "wForm_t.create_wForm(...);" then this constructor will allocate storage
for the wForm_t object on the heap and initialze all the fields of the wForm_t object with
reasonable values (including the parameter values you specify). If you have a statically
declared wForm_t object, or a pointer to a wForm_t object you’ve already allocated
storage for, then calling this procedure via that object will initialize the fields of that
object, e.g., "somewFormObject.create_wForm(...);", without allocating new storage for
the object. Although wForm_t is a concrete class and it’s not unreasonable for an
application to call create_wForm directly, most applications will actually work with
classes derived from wForm_t, so it would be unreasonable for an application to call this
constructor directly. If you look back at the discussion of the wForm..endwForm
statement in the section on the HOWL declarative language, you’ll notice that the
appStart procedure calls a constructor named "myForm.create_myForm". This
constructor is a good example of a constructor for a class (myForm_t) derived from
wForm_t. Note that myForm is a statically declared object of type myForm_t (which is
derived from wForm_t) in the examle given earlier in this documentation.

wwName: this is a string that HOWL stores in the _name field of the object (from
wBase_t). HOWL does not copy this string, so the character data associated with this
argument must exist for the duration of the program (and must not change). You should
use str.a_cpy to create a copy of this string to pass to create_wForm if the original
string might change during the execution of the program.

caption: This is the string that HOWL will display in the title bar of the wForm_t’s
window on the screen. Note that Windows will create an internal copy of this string, so it
need not continue to exist after the call to the constructor.

exStyle: the constructor logically-ORs the value you supply to this parameter with the
Windows’ w.WS_EX_CONTROLPARENT extended window style. Normally you would
supply zero for this parameter value. However, if you want your form to have some
additional window extended style attributes, you can supply one (or more) of the
w.WS_EX_* constants here. See the Windows documentation for w.CreateWindowEx
for more details on the possible extended style constants you can use.

style: the constructor logically-ORs this value with the (w.WS_CLIPCHILDREN |
w.WS_OVERLAPPEDWINDOW) style when creating the window. Normally you would
supply zero for this parameter value. However, if you want your form to have some
additional window style attributes, you can supply one (or more) of the w.WS_* constants
here. See the Windows documentation for w.CreateWindow for more details on the
possible window style constants you can use.

parent: this is the handle of the parent window for this form. This should always be
NULL (if you are creating a child window, you’ll probably be using the window_t type,
not a wForm_t type).

x, y, width, height: These fields describe the position and size of the wForm_t window on
the main screen. These will either be the pixel coordinates and sizes or the Windows’
constant w.CW_USEDEFAULT (that tells Windows to pick good default values for these
arguments).

fillColor: This is the RGB background color you want to use for the client (drawing) area
of the wForm_t window.

visible: if true, then the constructor makes this form visible when it creates it. If this
argument is false, then you must explicitly call the show method to make the form visible
on the screen. For the main form, this argument is almost always true. If you are creating
multiple windows (forms), then you might set this argument to false for all but the main
form and call the show method to display the windows as needed.

appendMenuItem This method appends a new menu item to the wForm_t object’s menu list. See the
discussion of menu items (following shortly) for a complete discussio of those objects. In
most HOWL applications, you will not directly call this method; the HOWL declarative
language automatically appends all menu items you declare in the wMenu..endwMenu
Page 542 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
statement to the main window’s wForm_t object. However, if you want to manually
create a wForm_t object, you can call this functiont to attach a menu item to the form.

insertWidget See wContainer_t.insertWidget for more details. Note that this overridden version
will also set the parentForm field of the widget you insert (plus all contained widgets, if
the argument is a container) to the value of the form.

processMessage This is an internal HOWL method. Applications should not call this function.

 18.3.3.1.2 wMenu_t
Exactly one wMenu_t object is create for every wForm_t object that has a menu. The wMenu_t object

corresonds to the main menu for the form. This should be the first menu item (note that wMenu_t is derived from
wMenuItem_t, described next) added to the wForm_t object via an appendMenuItem method call.

 wMenu_t:
 class inherits(wMenuItem_t);

 // Constructors/Destructors:

 procedure create_wMenu
 (
 wmName :string;
 wmText :string;
 parentHandle :dword
); external;

 override method destroy; external;

 endclass;

create_wMenu This constructor creates the main menu item.

wmName: this is a string that HOWL stores in the _name field of the main menu object
(from wBase_t). HOWL does not copy this string, so the character data associated with
this argument must exist for the duration of the program (and must not change). You
should use str.a_cpy to create a copy of this string to pass to create_wMenu if the
original string might change during the execution of the program.

wmText: This is basically ignored and should be the empty string or some string like
"main menu".

parentHandle: This must be the handle of the wForm_t object that contains this menu.

destroy This is the destructor method for the wMenu_t object. Applications should not call this
method directly if the menu is on a form. The wForm_t object that holds the menu will
automatically call the destructors for all the objects on its menu list (including the
wMenu_t object).

 18.3.3.1.3 wMenuItem_t
wMenuItem_t objects generally correspond to the actual menu items present in the main window.

 wMenuItem_t:
 class inherits(wBase_t);

 var
 align(4);
 wMenuItem_private:
 record
Released to the Public Domain Page 543

HLA Standard Library

 nextMenu :wMenuItem_p;
 itemType :dword;
 itemString :string;
 itemHandler :widgetProc;

 endrecord;

 // Constructors/Destructors:

 procedure create_wMenuItem
 (
 wmiName :string;
 parentHandle :dword;
 itemType :dword;
 itemString :string;
 itemHandler :widgetProc
); external;

 override method enable; external;
 override method disable; external;

 method checked(state:boolean); external;

 // Accessor functions:

 method get_itemType; @returns("eax"); external;
 method get_itemString; @returns("eax"); external;
 method get_itemHandler; @returns("eax"); external;

 method set_itemType(itemType:dword); external;
 method set_itemString(itemString:string); external;
 method set_itemHandler(itemHandler:widgetProc); external;

 endclass;

nextMenu This is a private data field that the wForm_t class uses to create a linked list of menu items
on the main form. Applications should not access this field.

parentHandle This is the handle of the main application’s form

itemType This field specifies the type of the menu item. It must be the logical OR of oe or more of
the following constants: w.MF_STRING, w.MF_CHECKED, w.MF_DISABLED,
w.MF_ENABLED, w.MF_GRAYED, w.MF_SEPARATOR, and w.MF_UNCHECKED. See the
Windows documentation for w.AppendMenu for more details.

itemString This is the string text that Windows displays for the menu item.

itemHandler This is a widgetProc procedure that HOWL will call when the user selects a menu item.

enable,

disable These two methods will enable or disable a menu item, respectively. Note that when
HOWL disables a menu item, it will gray that menu item and will prevent the user from
selecting it in the menu. This is equivalent to the (w.MF_DISABLE | w.MF_GRAYED)
item type.
Page 544 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
checked If the current menu item has the w.MF_CHECKED flag, then calling this method will
display a check mark if the argument is true, it will clear a displayed check mark if the
argument is false.

get_itemType,

get_itemString,

get_itemHandler These accessor functions return the values of the respective fields in the EAX register.

set_itemType,

set_itemString,

set_itemHandler These mutator functions set the values of the respective fields to the value passed as an
argument. Note that the set_itemString function does not make a copy of the string
data, it stores the string pointer directly into the itemString data field. Therefore, your
application should make a copy of the string to pass to this mutator if the string data could
change.

 18.3.3.2 Tabbed Forms
A tabbed form is a wForm_t object that contains exactly one wTabs_t object on it. A wTabs_t object is a

container that contains a list of wTabPage_t (window) objects on it, one wTabPage_t object for each tab.
present on the wTabs_t control. Whenever the user selects one of the tabs on the wTabs_t control, HOWL will
display the corresponding wTabPage_t object (hiding the previously displayed wTabPage_t object). This lets
an application have multiple pages on the main form that the user can select the pages as needed.

 18.3.3.2.1 wTabs_t
The wTabs_t class is a special type of container class. If used correctly, wTabs_t objects only hold

wTabPage_t objects (called "pages") that correspond to a window on top of the main form that hold the widgets
associated with a tab on that main form. wTabs_t objects represent the current state of a tabbed form.

 wTabPage_array :pointer to wTabPage_p;

 wTabs_t:
 class inherits(wContainer_t);

 var
 align(4);
 wTabs_private:
 record

 curSelection :dword;
 numTabs :uns32;
 pages :wTabPage_array;
 numElements :dword;

 endrecord;

 procedure create_wTabs
 (
 wtName :string;
 parent :window_p;
 x :dword;
 y :dword;
 width :dword;
 height :dword
); external;

 method get_numTabs; @returns("eax"); external;
 method curTab; @returns("eax"); external;
Released to the Public Domain Page 545

HLA Standard Library
 method setTab(tab:uns32); external;
 method get_page(tabIndex:dword); @returns("eax"); external;
 method deleteTab(tabIndex:dword); @returns("eax"); external;
 method insertTab
 (
 index :dword;
 tabText :string;
 page :wTabPage_p
); external;

 override method destroy; external;
 override method processMessage; external;

 endclass;

curSelection This field contains the zero-based tab index for the currently active tab on a wForm_t
tabbed object. This is a private data field that applications must not access.

numTabs This private data field contains the number of tabs currently associated with the wTabs_t
object. Applications should never directly access this data field. They can use the
get_numTabs accessor method to query its value. Applications must never directly
change the value of this field.

pages The pages data field is a pointer to an array of wTabPage_p pointers. This is a private
data field and applications should not access or modify its contents. Applications can use
the get_page method to read entries from the array pointed at by pages.

numElements This is a private data field that specifies the number of elements in the array pointed at by
the pages data field. Applications must not access or modify this value.

create_wTabs This is the constructor for the wTabs_t class. If called as a class procedure (e.g.,
"wTabs_t.create_wTabs") then this procedure will allocate storage on the heap for a new
wTabs_t object and return a pointer to that new object in ESI. If you call this method via
an object variable (e.g., "myTab.create_wTab") then this constructor will initialize the
fields of that object without allocating new storage for it (and return a pointer to the object
in ESI).

wtName: this string is assigned to the _name field of the object. This string should not
change during the execution of the program. Pass a copy of the string (using str.a_cpy) if it
is possible for this string to change during program execution.

parent: this is the handle of the parent window_t object (e.g., wForm_t object) that holds
this wTabs_t object.

x, y, width, height: These arguments specify the position and size of the tab control
within the client area of the parent object. The x and y values are almost always zero, the
width should be the width of the client area of the parent window, and the height should 25
or some other similar value.

destroy This is the destructor for the wTabs_t class. Generally, tabs are attached to a wForm_t
object and that object will destroy the tabs when it is destroyed. Therefore, an application
will rarely call a wTabs_t destructor unless it explicitly creates the wTab_t object and
doesn’t attach those tabs to some other container (e.g., wForm_t) object).

get_numTabs This method returns the current number of tabs on the tab control. In addition to returning
the value of the numTabs data field, this method also does a sanity check to ensre that the
number of tabs on the Windows control matches the numTabs data field value.

curTab This method returns the currently selected tab index (0..numtabs-1). Note that this method
actually calls Windows to retrieve this value, it is not simply an accessor to the
curSelection data field (indeed, this is a mutator to the curSelection field because it
will update curSelection with the value that Windows returns). This also does a sanity
check on the values and raises an exception if Windows and HOWL have different ideas
about the number of tabs on the control.
Page 546 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
setTab This method sets the currently selected tab to the value you pass as an argument. This
value must be in the range 0..numTabs-1. If the argument is outside this range, the
setTab method raises an exception. This method also does a sanity check to ensure that
Windows’ and HOWL’s tab counts are the same.

deleteTab This function deletes a tab (specified by the zero-based tabIndex argument) from the tab
bar on the form. Note that this function does not call the destructor for the tab object, nor
does it destroy any of the widgets contained on the form. It simply removes the tab from
the tab bar (and the corresponding entry from the array pointed at by the pages data
field). This function returns the pointer to the wTabPage_t widget removed from the
pages array in the EAX register. Note that this method does not remove the wTabPage_t
object from the tab’s widgetList (that is, the tab still contains the wTabPage_t object).
Therefore, if you destroy the tab, or otherwise iterate over all the widgets held by the
wTabs_t container, you will still process the deleted tab. All that deleting a tab does is
visibly remove it from the tab control on the form. Note that you can insert the deleted
wTabPage_t object (whose address is returned in EAX by deleteTab) by calling
insertTab. It is your responsibility to save the value returned by deleteTab (or
otherwise locate the deleted item) if you intend to reinsert it into the tab control later on.

insertTab This build adds a new tab entry to the tab control and inserts a pointer to a wTabPage_t
object into the array pointed at by the tab’s pages data field.

index: This is the zero-based index specifying the tab position. This value must be in the
range 0..numTabs. If index is less than numTabs, then insertTab will insert the new
tab in front of the tab at the specified index. If index is equal to numTabs, then
insertTab will append the new tab to the end of the tab list. If index is greater than
numTabs, insertTab will raise an exception.

tabText: this is the string that Windows will draw on the tab. Windows will make a copy
of this string’s character data.

page: this is the wTabPage_t object that HOWL will display when you select the new
tab. Generally, a program will place several other widgets on thie wTabPage_t display
surface

processMessage This is a private method. Applications should never call this method..

 18.3.3.3 wGroupBox_t
A wGroupBox_t object is a rectangular panel with a caption along the upper-left-hand corner of the

rectangle (on top of the line outlining the rectangle). Generally, wGroupBox_t objects are used to visually
separate and group items on a form.

 wGroupBox_t:
 class inherits(wContainer_t);

 procedure create_wGroupBox
 (
 wgbName :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword
); external;

 endclass;

create_wGroupBox This is the constructor for the wGroupBox_t class.
Released to the Public Domain Page 547

HLA Standard Library
wgbName: This is the name of the object that HOWL stores into the _name data field.

caption: This is the string that Windows displays in the upper-left-hand corner of the
group box. Windows makes a copy of this string for its internal use.

parent: This is the handle of the window (usually the main form or a wView_t object on a
tabbed form) that contains the group box.

x, y, width, height: These are the (parent-form-relative) coordinates and size for the group
box.

 18.3.4 Graphic Objects
Graphic objects in HOWL are static images that HOWL draws on a form. Examples include rectangles and

ellipses. All graphic objects are derived from wSurface_t, which is derived from wClickable_t, so graphic
objects can respond to single clicks. Note that although the wClickable_t type also handles double clicks,
graphic objects don’t send double-click notifications, so if you try to install a double-click handler for one of
these objects (which is legal to do), it won’t have any effect. Double-clicks will simply be treated as two single
clicks. Because attaching an "onClick" handler to a graphic object is not the common case, you will have to
explicitly call the set_onClick method to initialize an onClick handler. The HOWL declarative language
doesn’t provide an option to do this for you.

 18.3.4.1 wBitmap_t
The wBitmap_t class lets you create objects that display a bit mapped image on a form.

 wBitmap_t:
 class inherits(wSurface_t);

 var
 align(4);
 wBitmap_private:
 record

 stretch :boolean;
 align(4);

 imageName :string;
 imageHandle :dword;
 sourceX :dword;
 sourceY :dword;
 sourceW :dword;
 sourceH :dword;
 destW :dword;
 destH :dword;

 endrecord;

 procedure create_wBitmap
 (
 wiName :string;
 imageName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 bkgColor :dword
); external;

 method get_imageName; @returns("eax"); external;
Page 548 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 method get_sourceX; @returns("eax"); external;
 method get_sourceY; @returns("eax"); external;
 method get_sourceW; @returns("eax"); external;
 method get_sourceH; @returns("eax"); external;
 method get_destW; @returns("eax"); external;
 method get_destH; @returns("eax"); external;
 method get_stretch; @returns("al"); external;

 method load_bitmap(imageName:string); external;
 override method destroy; external;
 override method processMessage; external;

 method normalBitmap; @returns("eax"); external;
 method stretchBitmap
 (
 sourceX :dword;
 sourceY :dword;
 sourceW :dword;
 sourceH :dword;
 destW :dword;
 destH :dword
); external;

 endclass;

imageName This is a string that specifies the name of the bitmap resource within the executable file.
Important this is not the name of a ".bmp" file on the disk. You must compile ".bmp" files
into your executable using a "resouce compiler". The name you attach to the resource is
the name that this string will contain. This is a private field. Applications should not
access it directly. Note that if the value of this field is less than $1_0000, then it specifies
a standard Windows bitmap resource rather than an actual resource name. See the
discussion of the load_bitmap method for more details.

imageHandle,

sourceX,

sourceY,

sourceW,

sourceH,

destW,

destH These are private data fields that applications must not access or modify.

stretch This private field determines whether a bitmap is stretched or displayed normal. This field
is set to true by the stretchBitmap method and set to false by the normalBitmap
method.

create_wBitmap This is the constructor for the wBitmap_t class. If called as a class procedure (e.g.,
"wBitMap_t.create_wBitmap") this procedure will allocate storage on the heap for the
object and return a pointer to the new (initialized) object in ESI. If you call this constructor
specifying an existing object, then it will simply initialize that object in-place.

wiName: this is the string that the HOWL code stores into the _name field. This string’s
value should not change over the lifetime of the bitmap object.

imageName: This is either a string containing a bitmap resource name within the
executable file, or a standard Windows bitmap resource value. Legal bitmap resource
constants are:

w.OBM_BTNCORNERS, OBM_BTSIZE, w.OBM_CHECK, w.OBM_CHECKBOXES,
w.OBM_CLOSE, w.OBM_REDUCE, w.OBM_COMBO, w.OBM_REDUCED,
w.OBM_DNARROW, w.OBM_RESTORE, w.OBM_DNARROWD,
Released to the Public Domain Page 549

HLA Standard Library
w.OBM_RESTORED, w.OBM_DNARROWI, w.OBM_RGARROW,
w.OBM_LFARROW, w.OBM_RGARROWD, w.OBM_LFARROWD,
w.OBM_RGARROWI, w.OBM_LFARROWI, w.OBM_SIZE, w.OBM_MNARROW,
w.OBM_UPARROW, w.OBM_UPARROWD, w.OBM_UPARROWI, w.OBM_ZOOM,
w.OBM_ZOOMD.

See the Windows documentation for more details on these constants.

parent: this is the handle of the form, wView_t, or other drawing surface that contains the
wBitmap_t object (and on whose surface the bitmap will be drawn).

x, y, width, height: these arguments specify the bounding box on the parent’s form where
the bitmap will be drawn. If this bounding rectangle is larger than the bitmap image (in
any dimension), then HOWL will fill the unaccounted-for area wth the background color.
If this bounding rectangle is smaller than the image (in any dimension), then HOWL will
clip the bitmap when drawing it.

bkgColor: this is the RGB background color that HOWL uses to fill in the bounding
rectangle if the bitmap is smaller than the bounding rectangle. If the H.O. byte of this
color value contains $FF, then HOWL will use the RGB value in the L.O. three bytes to
fill the initial object window’s background color but will not redraw the background
thereafter (making the object’s background transparent).

load_bitmap This method loads the bitmap object with an image resource in the executable file. The
argument is a string specifying the resource name or one of the standard Windows bitmap
resource constants (see the discussion in create_wBitmap). Note that this is not a
".bmp" filename. You must compile bitmaps into the executable file using a resource
compiler and specify the resource name as the parameter to load_bitmap.

destroy This is the class destructor. This method releases all resources and memory in use by the
wBitmap_t object. Usually, applications will not call this method directly. Instead,
HOWL will automatically call this destructor when destroying the main application’s
wForm_t form or a wView_t object that contains the bitmap.

processMessage This is a private method that applications should never call.

normalBitmap This method sets the stretch field to false to display the bitmap in a normal form.

stretchBitmap This method sets the stretch field to true and copies the parameters to the corresponding
private data fields.

sourceX: The stretched bitmap will be copied from the original bit map starting at this
zero-based x-coordinate.

sourceY: The stretched bitmap will be copied from the original bit map starting at this
zero-based y-coordinate.

sourceW: This many bits along the X axis will be copied to the stretched bitmap.

sourceH: This many bits along the Y axis will be copied to the stretched bitmap.

destW: The bit mapped will be stretched (or shrunk) so that the sourceW bits will be
displayed using destW bits.

destH: The bit mapped will be stretched (or shrunk) so that the sourceH bits will be
displayed using destH bits.

 18.3.4.2 wEllipse_t
Ellipse graphic objects (of which circles are special cases) allow you to place ellipses anywhere on a form or

wView_t object.

 wEllipse_t:
 class inherits(wFilledFrame_t);

 procedure create_wEllipse
 (
Page 550 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 wrName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 lineColor :dword;
 fillColor :dword;
 bkgColor :dword
); external;

 override method processMessage; external;

 endclass;

create_wEllipse This is the consructor for the wEllise_t class. If you call this as a class procedure (e.g.,
"wEllipse_t.create_wEllipse") then this procedure will allocate storage for a new
wEllipse_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wEllipse will initialize that object
in-place.

wrName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the ellipse will be
drawn.

x, y, width, height: These arguments form a bounding box in which the ellipse will be
drawn. If width and height are the same value (meaning the bounding rectangle is a
square), then the ellipse will form a circle.

lineColor: this is the RGB color value for the pen that HOWL will use to draw the outline
of the ellipse.

fillColor: this is the RGB color value for the brush that HOWL will use to paint the
interior of the ellipse.

bkgColor: this is the RGB color value for the brush that HOWL will use to paint the
exterior of the ellipse. If the H.O. byte of this color value contains $FF, then HOWL will
use the RGB value in the L.O. three bytes to fill the initial object window’s background
color but will not redraw the background thereafter (making the object’s background
transparent).

processMessage This is a private method that applications must not call.

 18.3.4.3 wPie_t
The wPie_t graphic object draws a slice of a pie graph on a window. Note that wPie_t is only capable of

drawing a single wedge of a pie graph. Note: the procedures and methods in the wPie_t class make use of the
FPU on the CPU. You must ensure that the FPU is initialized (i.e., you’re not in MMX mode) before using these
functions.

 wPie_t:
 class inherits(wFilledFrame_t);

 var
 align(8);
 wPie_private:
 record

 startAngle :real64;
 endAngle :real64;
Released to the Public Domain Page 551

HLA Standard Library

 endrecord;

 procedure create_wPie
 (
 wrName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 startAngle :real64;
 endAngle :real64;
 lineColor :dword;
 fillColor :dword;
 bkgColor :dword
); external;

 override method processMessage; external;

 method get_startAngle; @returns("st0"); external;
 method get_endAngle; @returns("st0"); external;

 method set_startAngle(startAngle:real64); external;
 method set_endAngle(endAngle:real64); external;

 endclass;

startAngle This is the starting angle (measure counter-clockwise from the vertical line) from which
wPie_t objects between drawing the wedge. Applications should not access or modify
this field directly; they should use the supplied accessor and mutator functions for this
purpose. Do not assume the value of this field is degrees or radians.

endAngle This is the ending angle (measured counter-clockwise from the vertical line) to which
wPie_t object draw the wedge (from the startAngle to the endAngle in the counter-
clockwise direction). Applications should not access or modify this field directly; they
should use the supplied accessor and mutator functions for this purpose. Do not assume
the value of this field is degrees or radians.

create_wPie This the is the constructor for the wPie_t class. If you call this as a class procedure (e.g.,
"wPie_t.create_wPie") then this procedure will allocate storage for a new wPie_t object
on the heap and return a pointer to that object in ESI. If you make a standard object call to
this constructor, then create_wPie will initialize that object in-place.

wrName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the wedge will be
drawn.

x, y, width, height: These arguments form a bounding box in which the pie wedge will be
drawn.

startAngle: starting angle for the wedge (see the discussion above). This angle is
specified in degrees (not radians).

endAngle: ending angle for the wedge (see the discussion above). This angle is specified
in degrees, not radians.

lineColor: this is the RGB color value for the pen that HOWL will use to draw the outline
of the wedge.

fillColor: this is the RGB color value for the brush that HOWL will use to paint the
interior of the wedge.
Page 552 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
bkgColor: this is the RGB color value for the brush that HOWL will use to paint the
exterior of the wedge.

processMessage This is a private method that applications must not call.

get_startAngle,

get_endAngle These are accessor functions for the startAngle and endAngle data fields. Note that
because these values are real, these functions return their results on the top of the FPU
stack. These functions return the angles in degrees.

set_startAngle,

set_endAngle These are the mutator functions for the startAngle and endAngle data fields. These
functions expect the angle in degrees.

 18.3.4.4 wPolygon_t
A polygon is a closed geometric object created by drawing a set of lines between the points in a list (and

from the last point to the first point to close the object).
Note: Windows automatically resizes most geographic objects you draw (e.g., rectangles and ellipses). It

does not, however, resize a polygon if you change its bounding box. The HOWL polygon class, fortunately,
contains extra code to resize a polygon if you change the width or height of the bounding box. Therefore, when
using HOWL, your programs can treat polygons just like other geometric objects with respect to the resize
method.

 ptArray :pointer to w.POINT; // w.POINT:[x:dword, y:dword]

 wPolygon_t:
 class inherits(wFilledFrame_t);

 var
 align(4);
 wPolygon_private:
 record

 points :ptArray;
 scaledPoints :ptArray;
 nPoints :uns32;
 origW :dword;
 origH :dword;

 endrecord;

 procedure create_wPolygon
 (
 wrName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 lineColor :dword;
 fillColor :dword;
 bkgColor :dword
); external;

 override method destroy; external;
 override method processMessage; external;

 override method set_width; external;
Released to the Public Domain Page 553

HLA Standard Library
 override method set_height; external;
 override method resize; external;

 method set_points
 (
 nPoints :dword;
 points :ptArray
); external;

 method get_points; @returns("eax"); external;
 method get_nPoints; @returns("eax"); external;

 endclass;

points This is the address of an array of w.POINT objects in memory (each element is 8 bits, a
four-byte x-coordinate followed by a four byte y-coordinate value). This is a private data
field that applications should not access or modify directly.

scaledPoints This is the address of an array of w.POINT objects in memory (each element is 8 bits, a
four-byte x-coordinate followed by a four byte y-coordinate value). The Polygon class
uses this array (rather than points) to draw the polygon if the polyon has been resized since
it was created. This is a private data field that applications should not access or modify
directly.

nPoints This is the number of points in the array pointed at by the points field. If this field is
zero, then the points data field may contain an arbitary value. This is a private data field
that applications should not access or modify directly.

origW This field holds the original (created) width of the current polygon. The polygon class uses
this value to determine if it has to scale the polygon along the x-axis because the polygon
has been resized. This is a private data field that applications should not access or modify
directly.

origH This field holds the original (created) height of the current polygon. The polygon class
uses this value to determine if it has to scale the polygon along the y-axis because the
polygon has been resized. This is a private data field that applications should not access or
modify directly.

create_wPolygon This the is the constructor for the wPolygon_t class. If you call this as a class procedure
(e.g., "wPolygon_t.create_wPolygon") then this procedure will allocate storage for a new
wPolygon_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wPolygon will initialize that object
in-place. Note that this constructor initializes nPoints to zero (and points to NULL).
So immediately upon creation, the polygon has no vertexes and it will not draw anything
on the form until you provide a list of points.

wrName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the polygon will
be drawn.

x, y, width, height: These arguments form a bounding box in which the polygon will be
drawn.

lineColor: this is the RGB color value for the pen that HOWL will use to draw the outline
of the polygon.

fillColor: this is the RGB color value for the brush that HOWL will use to paint the
interior of the polygon.

bkgColor: this is the RGB color value for the brush that HOWL will use to paint the
exterior of the polygon. If the H.O. byte of this color value contains $FF, then HOWL
will use the RGB value in the L.O. three bytes to fill the initial object window’s
Page 554 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
background color but will not redraw the background thereafter (making the object’s
background transparent).

processMessage This is a private method that applications must not call.

destroy This is the destructor for the wPolygon_t class. Normally, applications do not call this
destructor directly; instead, a container will call this destructor automatically when the
container is destroyed. However, if you’ve created an independent (of any container)
polygon object, you should call this destructor to free the resources it uses when you are
done with the polygon.

set_width,

set_height,

resize This are overridden methods from the wFilledFrame_t class. They handle scaling the
polygon when you change the size of the polygon’s bounding box. See the descriptions in
wFillFrame_t for more details. Note that the these functions will usually make a copy
of the points data pointed at by the points field and then set scaledPoints to point at
this new data (note, however, that if you reset the size back to the original size, then these
functions will deallocate the storage pointed at by the scaledPoints field).

set_points This is the mutator for the points and nPonts data fields.

nPoints: This argument specifies the number of points in the points array passed as the
second argument.

points: this is a pointer to an array of nPoints w.POINT elements. The set_points
method will make a copy of this data into internally allocated storage (on the heap) and
store a pointer to the new data in the points field (this call also frees any storage previously
in use by the points and scaledPoints fields).

get_nPoints This accessor returns the number of points in the polygon (the value of the nPoints
field).

get_points The get_points accessor function returns the value of the points or scaledPoints
field. It returns a pointer to the points field if the current bounding box width and
height of the polygon haven’t changed since the last set_points call. This method
returns scaledPoints if the polygon has been resized.

 18.3.4.5 wRectangle_t
The wRectangle_t graphic object displays a (clickable) rectangle on a window or form.

 wRectangle_t:
 class inherits(wFilledFrame_t);

 procedure create_wRectangle
 (
 wrName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 lineColor :dword;
 fillColor :dword
); external;

 override method processMessage; external;

 endclass;
Released to the Public Domain Page 555

HLA Standard Library
create_wRectangle

This is the consructor for the wRectangle_t class. If you call this as a class procedure
(e.g., "wRectangle_t.create_wRectangle") then this procedure will allocate storage for a
new wRectangle_t object on the heap and return a pointer to that object in ESI. If you
make a standard object call to this constructor, then wRectangle_t will initialize that
object in-place.

wrName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the window object on which the ellipse will be drawn.

x, y, width, height: These arguments form a bounding box in which the rectangle will be
drawn. If width and height are the same value, then the rectangle will form a square.

lineColor: this is the RGB color value for the pen that HOWL will use to draw the outline
of the rectangle.

fillColor: this is the RGB color value for the brush that HOWL will use to paint the
interior of the rectangle.

processMessage This is a private method that applications must not call.

 18.3.4.6 wRoundRect_t
wRoundRect_t objects are graphic objects that are rectangles with rounded corners.

 wRoundRect_t:
 class inherits(wFilledFrame_t);

 var
 align(4);
 wRoundRect_private:
 record

 cornerWidth :dword;
 cornerHeight :dword;

 endrecord;

 procedure create_wRoundRect
 (
 wrName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 cornerWidth :dword;
 cornerHeight :dword;
 lineColor :dword;
 fillColor :dword;
 bkgColor :dword
); external;

 method get_cornerWidth; @returns("eax"); external;
 method get_cornerHeight; @returns("eax"); external;

 method set_cornerWidth(cornerWidth:dword); external;
 method set_cornerHeight(cornerHeight:dword); external;

 override method processMessage; external;
Page 556 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference

 endclass;

cornerWidth This data field controls the width of the ellipse that Windows draws on each corner of the
rounded rectangle. Applications should not access this field directly, they should use the
appropriate accessor and mutator functions to access or set the value of this data field.
This value should be less than 1/2 the height of the round rectangle object.

cornerHeight This data field controls the height of the ellipse that Windows draws on each corner of the
rounded rectangle. Applications should not access this field directly, they should use the
appropriate accessor and mutator functions to access or set the value of this data field.
This value should be less than 1/2 the height of the round rectangle object.

create_wRoundRect

This is the consructor for the wRoundRect_t class. If you call this as a class procedure
(e.g., "wRoundRect_t.create_wRoundRect") then this procedure will allocate storage for a
new wRoundRect_t object on the heap and return a pointer to that object in ESI. If you
make a standard object call to this constructor, then create_wRoundRect will initialize
that object in-place.

wrName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the round
rectangle will be drawn.

x, y, width, height: These arguments form a bounding box in which the round rectangle
will be drawn.

lineColor: this is the RGB color value for the pen that HOWL will use to draw the outline
of the round rectangle.

fillColor: this is the RGB color value for the brush that HOWL will use to paint the
interior of the round rectangle.

bkgColor: this is the RGB color value for the brush that HOWL will use to paint the
exterior of the round rectangle (the area just outside the rounded corners). If the H.O. byte
of this color value contains $FF, then HOWL will use the RGB value in the L.O. three
bytes to fill the initial object window’s background color but will not redraw the
background thereafter (making the object’s background transparent).

get_cornerWidth,

get_cornerHeight These are the accessor functions for the cornerWidth and cornerHeight data fields.
Applications should call these methods rather than accessing the data fields directly.

set_cornerWidth,

set_cornerHeight These are the mutator functions for the cornerWidth and cornerHeight data fields.
Applications should call these methods rather than writing directly to the data fields.

processMessage This is a private method that applications must not call.

 18.3.5 Buttons
The HOWL button widgets come in two basic varieties: checkable (check boxes and radio buttons) and non-

checkable (push buttons). All buttons are derived from the wClickable_t class. The constructors for these
buttons let you initialize the onClick widgetProc associated with all buttons; you can also call the
set_onDblClick method to make a button double-clickable.

 18.3.6 wCheckBox_t
wCheckBox_t objects hare a binary state (checked or unchecked). Whenever the user clicks on a checkbox,

the widget toggles its state. Note that wCheckBox_t objects inherit the fields of the wCheckable_t class. You
can call the get_check and set_check methods of that class to get the current wCheckBox_t object state or to
set it.
Released to the Public Domain Page 557

HLA Standard Library
 wCheckBox_t:
 class inherits(wCheckable_t);

 procedure create_wCheckBox
 (
 wcbName :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 endclass;

create_wCheckBox

This is the consructor for the wCheckBox_t class. If you call this as a class procedure
(e.g., "wCheckBox_t.create_wCheckBox") then this procedure will allocate storage for a
new wCheckBox_t object on the heap and return a pointer to that object in ESI. If you
make a standard object call to this constructor, then create_wCheckBox will initialize
that object in-place.

wcbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn immediately to the right of the check
box. Windows makes an internal copy of this string, so the value need only exist for as
long as the constructor call is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the check box will
be drawn.

x, y, width, height: These arguments form a bounding box in which the check box and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the checkbox widget. If this field contains NULL, HOWL will not call any widgetProc
procedure.

 18.3.7 wCheckBox3_t
wCheckBox3_t checkboxes are similar to standard checkboxes except they have three states: checked,

unchecked, and grayed. The get_state method (inherited from wCheckable_t) will return 0 (unchecked), 1
(checked), or 2 (grayed).

 wCheckBox3_t:
 class inherits(wCheckable_t);

 procedure create_wCheckBox3
 (
 wcb3Name :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;
Page 558 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference

 endclass;

create_wCheckBox3

This is the consructor for the wCheckBox3_t class. If you call this as a class procedure
(e.g., "wCheckBox3_t.create_wCheckBox3") then this procedure will allocate storage for
a new wCheckBox3_t object on the heap and return a pointer to that object in ESI. If you
make a standard object call to this constructor, then create_wCheckBox3 will initialize
that object in-place.

wcbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn immediately to the right of the check
box. Windows makes an internal copy of this string, so the value need only exist for as
long as the constructor call is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the check box will
be drawn.

x, y, width, height: These arguments form a bounding box in which the check box and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the checkbox widget. If this field contains NULL, HOWL will not call any widgetProc
procedure.

 18.3.8 wCheckBox3LT_t
wCheckBox3LT_t checkboxes are similar to wCheckBox3_t checkboxes except they draw the caption text

to the left of the checkbox rather than to the right of it. The get_state method (inherited from wCheckable_t)
will return 0 (unchecked), 1 (checked), or 2 (grayed).

 wCheckBox3LT_t:
 class inherits(wCheckable_t);

 procedure create_wCheckBox3LT
 (
 wcb3ltName :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 endclass;

create_wCheckBox3LT

This is the consructor for the wCheckBox3LT_t class. If you call this as a class procedure
(e.g., "wCheckBox3LT_t.create_wCheckBox3LT") then this procedure will allocate
storage for a new wCheckBox3LT_t object on the heap and return a pointer to that object
in ESI. If you make a standard object call to this constructor, then
create_wCheckBox3LT will initialize that object in-place.

wcbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.
Released to the Public Domain Page 559

HLA Standard Library
caption: this is the caption text that will be drawn immediately to the left of the check box.
Windows makes an internal copy of this string, so the value need only exist for as long as
the constructor call is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the check box will
be drawn.

x, y, width, height: These arguments form a bounding box in which the check box and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the checkbox widget. If this field contains NULL, HOWL will not call any widgetProc
procedure.

 18.3.9 wCheckBoxLT_t
wCheckBoxLT_t checkboxes are similar to wCheckBox_t checkboxes except they draw the caption text to

the left of the checkbox rather than to the right of it.

 wCheckBoxLT_t:
 class inherits(wCheckable_t);

 procedure create_wCheckBoxLT
 (
 wcb3ltName :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 endclass;

create_wCheckBoxLT

This is the consructor for the wCheckBoxLT_t class. If you call this as a class procedure
(e.g., "wCheckBoxLT_t.create_wCheckBoxLT") then this procedure will allocate storage
for a new wCheckBoxLT_t object on the heap and return a pointer to that object in ESI. If
you make a standard object call to this constructor, then create_wCheckBoxLT will
initialize that object in-place.

wcbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn immediately to the left of the check box.
Windows makes an internal copy of this string, so the value need only exist for as long as
the constructor call is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the check box will
be drawn.

x, y, width, height: These arguments form a bounding box in which the check box and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the checkbox widget. If this field contains NULL, HOWL will not call any widgetProc
procedure.
Page 560 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 18.3.10 wPushButton_t
wPushButton_t objects are standard Windows push button widgets. They almost always invoke some sort of

"onClick" widgetProc procedure when the button is pressed.

 wPushButton_t:
 class inherits(wButton_t);

 procedure create_wPushButton
 (
 wpbName :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 endclass;

create_wPushButton

This is the consructor for the wPushButton_t class. If you call this as a class procedure
(e.g., "wPushButton_t.create_wPushButton") then this procedure will allocate storage for
a new wPushButton_t object on the heap and return a pointer to that object in ESI. If
you make a standard object call to this constructor, then create_wPushButton will
initialize that object in-place.

wcbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn on the push button. Windows makes an
internal copy of this string, so the value need only exist for as long as the constructor call
is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the push button
will be drawn.

x, y, width, height: These arguments form a bounding box in which the push button and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the push button widget. If this field contains NULL, HOWL will not call any
widgetProc procedure.

 18.3.11 wRadioButton_t
wRadioButton_t objects are stand-alone radio buttons on a form. You’ll rarely use these objects because

radio buttons are generally employed in sets (using a wRadioSet_t container and wRadioSetButton_t
objects). A stand-alone radio button is essentially a check box with a circle and a dot rather than a square and an
"x". The main purpose for wRadioButton_t objects (and wRadioButtonLT_t objects) is for programmers who
want to manually control the operation of the radio buttons.

 wRadioButton_t:
 class inherits(wCheckable_t);

 procedure create_wRadioButton
 (
 wrbName :string;
 caption :string;
Released to the Public Domain Page 561

HLA Standard Library
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 endclass;

create_wRadioButton

This is the consructor for the wRadioButton_t class. If you call this as a class procedure
(e.g., "wRadioButton_t.create_wRadioButton") then this procedure will allocate storage
for a new wRadioButton_t object on the heap and return a pointer to that object in ESI.
If you make a standard object call to this constructor, then create_wRadioButton will
initialize that object in-place.

wrbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn to the right of the radio button.
Windows makes an internal copy of this string, so the value need only exist for as long as
the constructor call is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the radio button
will be drawn.

x, y, width, height: These arguments form a bounding box in which the radio button and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the radio button widget. If this field contains NULL, HOWL will not call any
widgetProc procedure. Generally, if you’re using wRadioButton_t objects in your
application, it is the responsibility of the onClick procedure to properly update the other
radio buttons associated with the one the user has just clicked on.

 18.3.12 wRadioButtonLT_t
wRadioButton_LT objects are just like wRadioButton_t objects except the text appears to the left of the

radio button rather than to the right.

 wRadioButtonLT_t:
 class inherits(wCheckable_t);

 procedure create_wRadioButtonLT
 (
 wrbltName :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 endclass;

create_wRadioButtonLT
Page 562 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
This is the consructor for the wRadioButton_t class. If you call this as a class procedure
(e.g., "wRadioButtonLT_t.create_wRadioButtonLT") then this procedure will allocate
storage for a new wRadioButtonLT_t object on the heap and return a pointer to that
object in ESI. If you make a standard object call to this constructor, then
create_wRadioButtonLT will initialize that object in-place.

wrbltName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn to the left of the radio button. Windows
makes an internal copy of this string, so the value need only exist for as long as the
constructor call is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the radio button
will be drawn.

x, y, width, height: These arguments form a bounding box in which the radio button and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the radio button widget. If this field contains NULL, HOWL will not call any
widgetProc procedure. Generally, if you’re using wRadioButtonLT_t objects in your
application, it is the responsibility of the onClick procedure to properly update the other
radio buttons associated with the one the user has just clicked on. Note that the
wRadioSet..endwRadioSet statement in the HOWL declarative language will report
an error if you attempt to add some non-radio-set-button widget to the wRadioSet_t
object you’re creating.

 18.3.13 wRadioSet_t
A wRadioSet_t object is a container that holds (only) wRadioSetButton_t and

wRadioSetButtonLT_t objects. The wRadioSet_t object automatically maintains all the buttons it contains,
ensuring that (at most) one button is checked at a time. Note that an application must only insert groups of
wRadioSetButton_t and wRadioSetButtonLT_t objects into the widget list of a wRadioSet_t object. If
an application (manually) inserts other objects into a wRadioSet_t widget list, the radio buttons may not
behave properly. Visually, a wRadioSet_t object is identical to a wGroupBox_t object. That is, it is a
rectangular panel with a caption in the upper-left-hand corner of the rectangle.

 wRadioSet_t:
 class inherits(wContainer_t);

 var
 align(4);
 wRadioSet_private:
 record

 // Windows handle for the group box window

 groupBoxHndl :dword;

 endrecord;

 procedure create_wRadioSet
 (
 wrsName :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
Released to the Public Domain Page 563

HLA Standard Library
 width :dword;
 height :dword;
 bkgColor :dword
); external;

 override method processMessage; external;
 override method destroy; external;
 override method set_width; external;
 override method set_height; external;
 override method resize; external;

 endclass;

groupBoxHndl This is the handle for the actual group box (a separate surface for the background is use to
fill in the area behind the group box). This is a private field. Applications should not
access it.

create_wRadioSet This is the constructor for the wRadioSet_t class. If you call this as a class procedure (e.g.,
"wRadioSet_t.create_wRadioSet") then this procedure will allocate storage for a new
wRadioSet_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wRadioSet will initialize that
object in-place.

wrsName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn in the upper-left-hand corner of the
wRadioSet_t’s panel rectangle. Windows makes an internal copy of this string, so the
value need only exist for as long as the constructor call is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the radio set group
box will be drawn.

x, y, width, height: These arguments form a bounding box in which the radio button and
caption will be drawn.

processMessage This is a private method. Applications must not call it.

destroy This is the class constructor. Usually, a container object will call this destructor
automatically for you; applications don’t normally call this destructor unless they create a
wRadioSet_t object and don’t insert it into some container’s widget list.

set_width,

set_height,

resize These fields are overriden from the wVisual_t class. See the description there for more
details.

You will want to call the insertWidget method (inherited from wContainer_t) in order to add
wRadioSetButton_t or wRadioSetButtonLT_t objects to a wRadioSet_t object.

 18.3.13.1 wRadioSetButton_t
A wRadioSetButton_t is a standard radio set button that appears within a wRadioSet_t group box.

wRadioSetButton_t objects are identical to wRadioButton_t objects except that they support automatic
radio button control on a wRadioSet_t group box. You can actually specify wRadioSetButton_t objects
outside of a wRadioSet_t group box; however, HOWL will only maintain automatic radio button operation on
those buttons you declare (in the HOWL declarative language) in a sequence without any other intervening
widget types (except wRadioSetButtonLT_t objects, which can be intermixed with wRadioSetButton_t
objects).

 wRadioSetButton_t:
 class inherits(wCheckable_t);
Page 564 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference

 procedure create_wRadioSetButton
 (
 wrbName :string;
 caption :string;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 endclass;

create_wRadioSetButton

This is the consructor for the wRadioSetButton_t class. If you call this as a class
procedure (e.g., "wRadioSetButton_t.create_wRadioSetButton") then this procedure will
allocate storage for a new wRadioSetButton_t object on the heap and return a pointer
to that object in ESI. If you make a standard object call to this constructor, then
create_wRadioSetButton will initialize that object in-place.

wrbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn to the right of the radio button.
Windows makes an internal copy of this string, so the value need only exist for as long as
the constructor call is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the radio button
will be drawn.

x, y, width, height: These arguments form a bounding box in which the radio button and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the radio button widget. If this field contains NULL, HOWL will not call any
widgetProc procedure. Generally, if you’re using wRadioButton_t objects in your
application, it is the responsibility of the onClick procedure to properly update the other
radio buttons associated with the one the user has just clicked on.

 18.3.13.2 wRadioSetButtonLT_t
A wRadioSetButtonLT_t is identical to a wRadioSetButton_t object except it draws the caption text to

the left of the button rather than to the right of the button.

 wRadioSetButtonLT_t:
 class inherits(wCheckable_t);

 procedure create_wRadioSetButtonLT
 (
 wrbltName :string;
 caption :string;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
Released to the Public Domain Page 565

HLA Standard Library
); external;

 endclass;

create_wRadioSetButtonLT

This is the consructor for the wRadioSetButtonLT_t class. If you call this as a class
procedure (e.g., "wRadioSetButtonLT_t.create_wRadioSetButtonLT") then this
procedure will allocate storage for a new wRadioSetButton_t object on the heap and
return a pointer to that object in ESI. If you make a standard object call to this constructor,
then create_wRadioSetButtonLT will initialize that object in-place.

wrbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is the caption text that will be drawn to the left of the radio button. Windows
makes an internal copy of this string, so the value need only exist for as long as the
constructor call is in progress.

parent: this is the handle of the wView_t or wForm_t object on which the radio button
will be drawn.

x, y, width, height: These arguments form a bounding box in which the radio button and
caption will be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever you click on
the radio button widget. If this field contains NULL, HOWL will not call any
widgetProc procedure. Generally, if you’re using wRadioButton_t objects in your
application, it is the responsibility of the onClick procedure to properly update the other
radio buttons associated with the one the user has just clicked on.

 18.3.14 Editors and Edit Boxes
The HOWL edit widgets allow users to enter passwords, single lines of text, or text documents (up to 32KB

long). Users can cut and paste data between edit widgets and perform many other text-editing functions.
Applications can select text from an edit widget, insert text into the widget, or extract text from the widget.
Indeed, with just a little extra code, it’s quite possible to create a fully-featured text editor using the HOWL edit
widgets.

Perhaps the biggest limitation to these widgets is their 32K text limitation. A future version of HOWL will
include an extended text editor that overcomes this limitation.

All of the HOWL edit widgets are subclasses of the wabsEditBox_t class and, therefore, inherit all the
fields and methods from that abstract base class. You should take a moment to review that abstract base class
before looking at the following derived class definitions.

 18.3.14.1 wEditBox_t
A wEditBox_t object allows a user to enter a single string (a single line of text) from the keyboard.

 wEditBox_t:
 class inherits(wabsEditBox_t);

 procedure create_wEditBox
 (
 webName :string;
 initialTxt :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 style :dword;
Page 566 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 onChange :widgetProc
); external;

 endclass;

create_wEditBox This is the consructor for the wEditBox_t class. If you call this as a class procedure (e.g.,
"wEditBox_t.create_wEditBox") then this procedure will allocate storage for a new
wEditBox_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wEditBox will initialize that object
in-place.

webName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

initialTxt: HOWL will initialize the edit box’s text entry field with this string. This is
commonly an empty string in most objects.

parent: this is the handle of the wView_t or wForm_t object on which the edit box will be
drawn.

x, y, width, height: These arguments form a bounding box in which the edit box will be
drawn.

style: This argument is zero or more of the Windows edit box styles logically OR’d
together (or zero, to use the default edit box style). See the discussion of Windows edit
box styles in the section on the wEditBox object earlier in this document (in the HOWL
declaration language description).

onChange: this is the name of a widgetProc that HOWL will call whenever you change
any text in the edit box widget. If this field contains NULL, HOWL will not call any
widgetProc procedure. Generally, this field will contain NULL and you will process the
text in an edit box in response to some other system event (such as a button press or loss of
focus).

 18.3.14.2 wPasswdBox_t
A wPasswdBox_t object is almost identical to a wEditBox_t object. The difference is that Windows

substitutes asterisks (or some other user-defined character) for the characters the user types at the keyboard to
protect passwords from prying eyes.

 wPasswdBox_t:
 class inherits(wabsEditBox_t);

 procedure create_wPasswdBox
 (
 wpwbName :string;
 initialTxt :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 style :dword;
 onChange :widgetProc
); external;

 method get_passwordChar; @returns("eax"); external;
 method set_passwordChar(pwc:char); external;

 endclass;
Released to the Public Domain Page 567

HLA Standard Library
create_wPasswdBox

This is the consructor for the wPasswdBox_t class. If you call this as a class procedure
(e.g., "wPasswdBox_t.create_wPasswdBox") then this procedure will allocate storage for
a new wPasswdBox_t object on the heap and return a pointer to that object in ESI. If you
make a standard object call to this constructor, then create_wPasswdBox will initialize
that object in-place.

webName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

initialTxt: HOWL will initialize the password box’s text entry field with this string. This
is commonly an empty string in most objects.

parent: this is the handle of the wView_t or wForm_t object on which the password box
will be drawn.

x, y, width, height: These arguments form a bounding box in which the password box will
be drawn.

style: This argument is zero or more of the Windows edit box styles logically OR’d
together (or zero, to use the default edit box style). See the discussion of Windows edit
box styles in the section on the wEditBox object earlier in this document (in the HOWL
declaration language description).

onChange: this is the name of a widgetProc that HOWL will call whenever you change
any text in the password box widget. If this field contains NULL, HOWL will not call any
widgetProc procedure. Generally, this field will contain NULL and you will process the
text in a password box in response to some other system event (such as a button press or
loss of focus).

 18.3.14.3 wTextEdit_t
A wTextEdit_t object allows the user to enter multiple lines of text in a text editor format. If the text editor

string data contains more lines (or more characters on a given line) than will fit in the text editor window,
Windows will automatically attach scroll bars to the window so the user can scroll through the text data.

 wTextEdit_t:
 class inherits(wabsEditBox_t);

 procedure create_wTextEdit
 (
 wteName :string;
 initialTxt :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 style :dword;
 onChange :widgetProc
); external;

 method getLineCount; @returns("eax"); external;

 method getLineIndex(charIndex:dword);
 @returns("eax"); external;

 method getCharIndex(lineIndex:dword);
 @returns("eax"); external;

Page 568 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 method getLine(lineIndex:dword; txt:string); external;

 method a_getLine(lineIndex:dword);
 @returns("eax"); external;

 method scroll(horz:int32; vert:int32); external;
 method scrollCaret; external;
 method setTabStops(tabstops:dword); external;

 endclass;

create_wTextEdit

This is the consructor for the wTextEdit_t class. If you call this as a class procedure
(e.g., "wTextEdit_t.create_wTextEdit") then this procedure will allocate storage for a new
wTextEdit_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wTextEdit will initialize that
object in-place.

webName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

initialTxt: HOWL will initialize the text editor’s text entry field with this string. This is
commonly an empty string in most objects.

parent: this is the handle of the wView_t or wForm_t object on which the text editor will
be drawn.

x, y, width, height: These arguments form a bounding box in which the text editor will be
drawn.

style: This argument is zero or more of the Windows edit box styles logically OR’d
together (or zero, to use the default edit box style). See the discussion of Windows edit
box styles in the section on the wEditBox object earlier in this document (in the HOWL
declaration language description).

onChange: this is the name of a widgetProc that HOWL will call whenever you change
any text in the text editor widget. If this field contains NULL, HOWL will not call any
widgetProc procedure. Generally, this field will contain NULL and you will process the
text in a text editor widget in response to some other system event (such as a button press
or loss of focus).

get_lineCount This method returns the number of lines of text in the text editor widget.

get_lineIndex Given a zero-based character index into the text editor’s string (up to 32K), this function
will return a zero-based line number for that index (that is, the line number of the line that
contains that particular character).

get_charIndex Given a (zero-based) line number into the text editor’s data string, this function returns the
(zero-based) character index (into the text editor’s string data) of the first character on that
line.

get_line Given a line index into the text editor’s data string, this function returns the specified
string.

lineIndex This is the zero-based line index into the text editor’s data string.

txt: this is a string object wher get_line will copy the string data for the specified line. This
string must be previously allocated and have sufficient storage to hold the string or
HOWL will raise an exception.

a_get_line Given a line index, this method makes a copy of the specified text editor line on the heap
and returns a pointer to this string in the EAX register. It is the caller’s responsibility to
free the storage associated with this string with the application is done using it.

scroll This function will scroll the text editor window the number of characters specified by the
two arguments in the horizontal and vertical directions.

horz: this is the number of characters to scroll in the horizontal direction.
Released to the Public Domain Page 569

HLA Standard Library
vert: this is the number of characters to scroll in the vertical direction. Windows will not
let you scroll beyond the last line in the text editor’s string; if you attempt to do so,
Windows will simply display the last line of text at the top of the editor’s window.

scrollCaret Positions the text display window so that the text containing the insertion caret is visible
on the screen.

setTabStops This function sets tabstops every ’tabstops’ characters, where ’tabstops’ is the argument
you pass to this method.

 18.3.15 List, Drag, and Combo Boxes
List and drag boxes are tables of data from which the user can select an item (a row) by clicking on the line

of text associated with that item. Applications can add, delete, or rearrange lines of text in list and drag boxes.
End users can rearrange data in a drag box with no interaction from the application.

 18.3.15.1 wListBox_t
A wListBox_t object is a table of strings created by the application. The user can click or double-click on

these strings. The application can insert and delete strings in the list box. If there are too many strings to display
in the window, then Windows will attach a vertical scroll bar to the list box and allow the user to scroll through
the list box entry.

A list box will either display the strings in the order the application inserts them into the list box, or it can
display them in a sorted order. You specify whether you want a sorted or unsorted list box when you create it.

 wListBox_t:
 class inherits (wClickable_t);

 var
 align(4);
 wListBox_private:
 record

 textColor :dword;

 endrecord;

 procedure create_wListBox
 (
 wlbName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 sort :boolean;
 onClick :widgetProc
); external;

 method add_string(s:string); external;
 method insert_string(index:dword; s:string); external;
 method delete_string(index:dword); external;
 method reset; external;

 method find_prefix
 (
 s :string;
 startIndex :dword
); @returns("eax"); external;

 method find_string
Page 570 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 (
 s :string;
 startIndex :dword
); @returns("eax"); external;

 method get_count; @returns("eax"); external;
 method get_curSel; @returns("eax"); external;
 method get_itemData(i:dword); @returns("eax"); external;
 method a_get_text(i:dword); @returns("eax"); external;
 method get_text(i:dword; s:string); external;

 method set_curSel(index:dword); @returns("eax"); external;
 method set_itemData
 (
 index :dword;
 data :dword
); external;

 method load_dir
 (
 pathname :string;
 attributes :dword
); external;

 method get_textColor; @returns("eax"); external;
 method set_textColor(textColor:dword); external;

 override method processMessage; external;

 endclass;

textColor This is the RGB color that Windows will use to draw the text on the listbox. This is a
private data field; applications should only access this value using the associated access
and mutator. The constructor initializes the text color to black.

create_wListBox

This is the consructor for the wListBox_t class. If you call this as a class procedure (e.g.,
"wListBox_t.create_wListBox") then this procedure will allocate storage for a new
wListBox_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wListBox will initialize that object
in-place.

wlbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the list box will be
drawn.

x, y, width, height: These arguments form a bounding box in which the list box will be
drawn.

sort: if this field is true, then the constructor will create a sorted list box. If this value is
false, then the constructor will create an unsorted list box.

onClick: this is the name of a widgetProc that HOWL will call whenever select a (new)
line in a list box.

add_string This method appends a string (specified as the argument) to the end of an unsorted list
box. It will insert the string at the proper position within a sorted list box. Note that
Windows will make an internal copy of the string’s data.

insert_string This method inserts a string before some other entry in the list box. This method ignores
the sorted/unsorted state of the list box and always inserts the string at the specified index.
The index must be in the range 0..count where count is the number of entries in the list
Released to the Public Domain Page 571

HLA Standard Library
box. If you specify the value count as the index, then this method appends the item to the
end of the list (similar to add_string, except no sorting).

index: the line number before which the string is to be inserted. This is a zero-based index.

s: this is the string data to insert into the list box.

delete_string This method deletes the string at the specified index in the list box.

reset This method deletes all the strings in the list box.

find_prefix This method searches for a line of text in the list box that begins with some string. This
method begins searching starting with an application-defined line index into the list box.
This method returns the index into the list box where the string prefix was found, or the
constant w.LB_ERR if it could find no string with the specified prefix.

s: the string prefix to search for in the list box.

startIndex: the starting line index to begin the search.

find_string This method searches for a line of text in the list box that matches some string. This
method begins searching starting with an application-defined line index into the list box.
This method returns the index into the list box where the string was found, or the constant
w.LB_ERR if it could not find the string.

s: the string to search for in the list box.

startIndex: the starting line index to begin the search.

get_count This method returns the number of lines in the list box (in EAX).

get_curSel This method returns the index of the currently selected item in the list box (in EAX).

get_itemData Each line of text in a list box has a 32-bit user-defined data value associated with it. You
could, for example store a pointer to some object or other data type in this field and
retrieve it when the user selects an item in the list box. The get_itemData method
retrieves this user data from the list box. The single argument is the index of the list box
entry for which you want the user data (you would typically supply the data returned by
get_curSel as this argument).

a_get_text This method makes a copy of the string data (on the heap) for the line in the list box at the
index specified by the argument. It returns a pointer to this new string in EAX. It is the
caller’s responsibility to free the storage for this string when the caller is done with it.

get_text This method makes a copy of the string data for the line in the list box at a user-supplied
index. It stores the string data into a string object whose address the caller passes as an
argument. That string must have sufficient storage allocated for it or HOWL will raise an
exception.

i: index of the line in the list box whose string data this method will extract.

s: pointer to a string object where this method will store the result.

set_curSel This methods highlights the line at the specified index in the list box (it becomes the
"currently selected" item).

set_itemData This method allows you to associate a user-defined 32-bit data value with an item in the
list box. If 32 bits is insufficient for your needs, you can always store a pointer to the
actual data in this data area.

index: this is the (zero-based) index of the line in the list box that you want to attach the
data to.

data: this is the 32-bit value you want to associate with the line in the list box.

load_dir This method populates the list box with the file names from the directory specified by the
pathname argument.

pathname: an ambiguous pathname (e.g., "c:*.*" that specifies the path to the files and
the files at that path tha t you want to load into the list box.

attributes: either zero, or the logical OR of one or more of the following Windows’
attribute constants:
Page 572 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
w.DDL_ARCHIVE Includes archived files.

w.DDL_DIRECTORY Includes subdirectories. Subdirectory names are enclosed in
square brackets ([]).

w.DDL_DRIVES Includes drives. Drives are listed in the form [-x-], where x is
the drive letter.

w.DDL_EXCLUSIVE Includes only files with the specified attributes. By default,
read-write files are listed even if DDL_READWRITE is not
specified.

w.DDL_HIDDEN Includes hidden files.

w.DDL_READONLY Includes read-only files.

w.DDL_READWRITE Includes read-write files with no additional attributes.

w.DDL_SYSTEM Includes system files.

get_textColor,

set_textColor These accessor/mutator functions get and set the text color that the widget uses.

processMessage This is a private method. Applications must not call it.

 18.3.15.2 wDragListBox_t
A wDragListBox_t object is a special kind of list box that allows the user to rearrange the items in the list

box without any interaction from the application. An application uses drag list boxes exactly like list boxes
(except, of course, for the object’s type name). As the wDragListBox_t class is derived from wListBox_t, all
of the list box methods are available to wDragListBox_t objects. Note that HOWL does not offer drag list
boxes the "sort" option, which makes little sense as the end user will probably rearrange their drag list boxes thus
defeating the purpose of the sort option.

 wDragListBox_t:
 class inherits (wListBox_t);

 var
 align(4);
 wDragListBox_private:
 record

 // The following is a private field.
 // External code should not access it.

 startDragIndex :dword;

 endrecord;

 procedure create_wDragListBox
 (
 wlbName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 onClick :widgetProc
); external;

 override method processMessage; external;
Released to the Public Domain Page 573

HLA Standard Library

 endclass;

create_wDragListBox

This is the consructor for the wDragListBox_t class. If you call this as a class procedure
(e.g., "wDragListBox_t.create_wDragListBox") then this procedure will allocate storage
for a new wDragListBox_t object on the heap and return a pointer to that object in ESI.
If you make a standard object call to this constructor, then create_wDragListBox will
initialize that object in-place.

wlbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the drag list box
will be drawn.

x, y, width, height: These arguments form a bounding box in which the drag list box will
be drawn.

onClick: this is the name of a widgetProc that HOWL will call whenever the user
selects a (new) line in a drag list box.

 18.3.15.3 wComboBox_t
The wComboBox_t object is a combination of an edit box, a list box, and a pull-down menu. The user can

type text directly into a list box or click on a button attached to the combo box and select an item from a list box
that appears in a pull-down menu.

 wComboBox_t:
 class inherits (wListBox_t);

 var
 align(4);
 wComboBox_private:
 record

 onEditChange :widgetProc;
 onCancel :widgetProc;
 onSelEndOk :widgetProc;

 endrecord;

 procedure create_wComboBox
 (
 wcbName :string;
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 sort :boolean;
 onSelChange :widgetProc
); external;

 method get_onEditChange; @returns("eax"); external;
 method get_onCancel; @returns("eax"); external;
 method get_SelEndOk; @returns("eax"); external;

 method set_onEditChange(onEditChange:widgetProc); external;
 method set_onCancel(onCancel:widgetProc); external;
Page 574 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 method set_SelEndOk(onSelEndOk:widgetProc); external;

 method a_get_editBoxText; @returns("eax"); external;
 method get_editBoxText(theText:string); external;

 method set_editBoxText(theText:string); external;

 override method load_dir; external;
 override method processMessage; external;
 override method add_string; external;
 override method insert_string; external;
 override method delete_string; external;
 override method reset; external;
 override method find_prefix; external;
 override method find_string; external;
 override method get_count; external;
 override method get_curSel; external;
 override method get_itemData; external;
 override method a_get_text; external;
 override method get_text; external;
 override method set_curSel; external;
 override method set_itemData; external;

 endclass;

onEditChange This is a pointer to a widgetProc that HOWL will call whenever the user makes a change
to the edit box component of a combo box. If this field is NULL, HOWL will ignore it.
Note that applications should only access or modify this field using the associated
accessor/mutator methods.

onCancel This is a pointer to a widgetProc that HOWL will call whenever the user cancels a change
to the edit box component of a combo box. If this field is NULL, HOWL will ignore it.
Note that applications should only access or modify this field using the associated
accessor/mutator methods.

onSelEndOk This is a pointer to a widgetProc that HOWL will call whenever the user selects and item
from the pull-down list box and the application should select that entry. If this field is
NULL, HOWL will ignore it. Note that applications should only access or modify this
field using the associated accessor/mutator methods.

create_wComboBox

This is the consructor for the wComboBox_t class. If you call this as a class procedure
(e.g., "wComboBox_t.create_wComboBox") then this procedure will allocate storage for
a new wComboBox_t object on the heap and return a pointer to that object in ESI. If you
make a standard object call to this constructor, then create_wComboBox will initialize
that object in-place.

wcbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: This is the initial string data for the combo box’s edit box field.

parent: this is the handle of the wView_t or wForm_t object on which the combo box
will be drawn.

x, y, width, height: These arguments form a bounding box in which the combo box will
be drawn.

sort: like list boxes, combo boxes offer the option of sorting the list for you. If this field is
true, HOWL will create a sorted list in the combo box; if this field is false, the list in the
combo box will be unsorted.
Released to the Public Domain Page 575

HLA Standard Library
onSelChange: this is the name of a widgetProc that HOWL will call whenever the user
selects a (new) line in the list of a combo box.

get_onEditChange,

get_onCancel,

get_onSelEndOk These are the accessor functions for the combo box’s data fields.

set_onEditChange,

set_onCancel,

set_onSelEndOk These are the mutator functions for the combo box’s data fields.

a_get_editBox_text This method returns a copy of the string data currently held in the combo box’s edit box
component. HOWL allocates storage for this string and returns a pointer to the new string
in the EAX register. It is the caller’s responsibility to free the storage for this string.

get_editBox_text This method retrieves the string from the combo box and stores the string data in the string
object passed as a parameter. The destination string must have sufficient storage or
HOWL will raise an exception.

set_editBox_text This function replaces the combo box’s string data with the string passed as an argument.

The remaining methods listed in the wComboBox_t declaration above are overriden methods from the
wListBox_t class. The overriding occurs for internal technical reasons. To an application, these methods are
used exactly like those in a list box. Please see the discussion in the list box section for more details on the
operation of these methods.

 18.3.16 Progress Bars
A progress bar is a bar graph that shows the progress of some lengthy operation during the execution of an

application.

 18.3.16.1 wProgressBar_t
The wProgressBar_t type implements Windows progress bars in HOWL. A progress bar has three main

attributes: a current position (the current "progress"), a minimum position, and a maximum position. When
drawing a progress bar, Windows will create a horizontal bar graph and will fill the bar graph from the left to the
right based on the current position, minimum, and maximum values.

 wProgressBar_t:
 class inherits(wVisual_t);

 var
 align(4);
 wProgressBar_private:
 record

 position :word;
 align(4);

 lowRange :word;
 hiRange :word;

 endrecord;

 procedure create_wProgressBar
 (
 wpbName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
Page 576 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 height :dword
); external;

 method get_position; @returns("eax"); external;
 method set_position(position:word); external;

 method get_lowRange; @returns("eax"); external;
 method get_hiRange; @returns("eax"); external;
 method set_range(low:word; high:word); external;

 endclass;

position These data field is the current position of the track bar. Applications should never access
this field directly. Instead, they should use the accessor/mutator methods to read or write
this field’s data.

lowRange This is the minimum value for the progress bar’s position. It is usually zero, but you can
set any minimum value you like as long as it is less than the value held in the hiRange
data field. You should never set the value of the position data field to a value lower than
the lowRange value. Applications should never access this field directly. Instead, they
should use the accessor/mutator methods to read or write this field’s data.

hiRange This is the maximum value for the progress bar’s position. You can set any maximum
value you like as long as it is greater than the value held in the lowRange data field. You
should never set the value of the position data field to a value higher than the hiRange
value. Applications should never access this field directly. Instead, they should use the
accessor/mutator methods to read or write this field’s data.

create_wProgressBar

This is the consructor for the wProgressBar_t class. If you call this as a class procedure
(e.g., "wProgressBar_t.create_wProgressBar") then this procedure will allocate storage for
a new wProgressBar_t object on the heap and return a pointer to that object in ESI. If
you make a standard object call to this constructor, then create_wProgressBar will
initialize that object in-place.

wpbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the progress bar
will be drawn.

x, y, width, height: These arguments form a bounding box in which the progress bar will
be drawn.

get_position,

get_lowRange,

get_hiRange These are the accessor methods for the class’ data fields.

set_position,

set_lowRange,

set_hiRange These are the mutator functions for the class’ data fields. Note that changing any of these
values (and in particular, changing the position value) will cause Windows to redraw the
progress bar reflecting the new values.

 18.3.17 Scroll Bars and Track Bars
Scroll bars and track bars are positional input devices. Applications generally use scroll bars to specify a

position to view on a form (when the form’s contents are too large to fit in the window and one time) whereas a
Released to the Public Domain Page 577

HLA Standard Library
trackbar provides a generic numeric input device selectable by the position of the slider on the trackbar. Both
widgets are available in horizontal and vertical orientations.

Note that Windows can automatically associate horizontal and vertical scroll bars with a window when you
create that window. For window scrolling purposes, this is generally how you create and use scroll bars.
However, you can create stand-alone scroll bars for use by your applications using the scrollbar widget.

 18.3.17.1 wScrollBar_t
The wScrollBar_t class lets you create stand-alone scroll bars in your application. Scroll bars offer a large

number of event notifications that tell you about various user interactions with the scroll bar.
Scroll bars in early versions of Windows were limited to 16-bit range and position values. For the most part,

later versions of Windows extended all these values to 32 bits. However, one important pair of values, returned
when tracking movements on scroll bars, is still limited to 16-bit values. Therefore, if you plan to make full use
of the scroll bar’s feature set and notifications, you need to limit yourself to using 16-bit ranges and positions. In
general, this is not a severe limitations because there aren’t enough pixels on the screen to provide a granularit of
16 bits, much less 32. However, just note that although you can set the low and high range values for a scroll bar
to arbitrary 32-bit values, you should limit yourself to 16-bit values.

 wScrollBar_t:
 class inherits(wVisual_t);

 var
 align(4);
 wScrollBar_private:
 record

 onChange :widgetProc;
 onThumbPosn :widgetProc;
 onThumbTrack :widgetProc;
 onLineLeft :widgetProc;
 onLineRight :widgetProc;
 onLineDown :widgetProc;
 onLineUp :widgetProc;
 onEndScroll :widgetProc;
 onPageDown :widgetProc;
 onPageUp :widgetProc;
 onPageLeft :widgetProc;
 onPageRight :widgetProc;
 onTop :widgetProc;
 onBottom :widgetProc;

 lineInc :uns32;
 pageInc :uns32;
 curPosn :dword;
 info :w.SCROLLINFO;
 textColor :dword;

 endrecord;

 procedure create_wScrollBar
 (
 wtbName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 style :dword;
 onChange :widgetProc
); external;

 override method enable; external;
Page 578 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 override method disable; external;
 override method show; external;
 override method hide; external;

 method get_position; @returns("eax"); external;
 method set_position(position:dword); external;

 method get_lowRange; @returns("eax"); external;
 method get_hiRange; @returns("eax"); external;
 method set_range(low:dword; high:dword); external;

 method get_onChange; @returns("eax"); external;
 method get_onThumbPosn; @returns("eax"); external;
 method get_onThumbTrack; @returns("eax"); external;
 method get_onLineDown; @returns("eax"); external;
 method get_onLineUp; @returns("eax"); external;
 method get_onLineLeft; @returns("eax"); external;
 method get_onLineRight; @returns("eax"); external;
 method get_onEndScroll; @returns("eax"); external;
 method get_onPageDown; @returns("eax"); external;
 method get_onPageUp; @returns("eax"); external;
 method get_onPageLeft; @returns("eax"); external;
 method get_onPageRight; @returns("eax"); external;
 method get_onTop; @returns("eax"); external;
 method get_onBottom; @returns("eax"); external;
 method get_lineInc; @returns("eax"); external;
 method get_pageInc; @returns("eax"); external;

 method set_onChange(onChange:widgetProc); external;
 method set_onThumbPosn(onThumbPosn:widgetProc); external;
 method set_onThumbTrack(onThumbTrack:widgetProc); external;
 method set_onLineDown(onLineDown:widgetProc); external;
 method set_onLineUp(onLineUp:widgetProc); external;
 method set_onLineLeft(onLineLeft:widgetProc); external;
 method set_onLineRight(onLineRight:widgetProc); external;
 method set_onEndScroll(onEndScroll:widgetProc); external;
 method set_onPageDown(onPageDown:widgetProc); external;
 method set_onPageUp(onPageUp:widgetProc); external;
 method set_onPageLeft(onPageLeft:widgetProc); external;
 method set_onPageRight(onPageRight:widgetProc); external;
 method set_onTop(onTop:widgetProc); external;
 method set_onBottom(onBottom:widgetProc); external;

 method set_lineInc(lineInc:dword); external;
 method set_pageInc(pageInc:dword); external;

 method get_textColor; @returns("eax"); external;

 method set_textColor(textColor:dword); external;

 override method processMessage; external;

 endclass;

onChange This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on the scroll bar (using any means to
Released to the Public Domain Page 579

HLA Standard Library
change the value). Upon entry into the widgetProc procedure, the H.O. word of the
wParam argument contains the current scroll bar position.

onThumbPosn This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on the scroll bar by dragging the
thumb. HOWL calls this procedure after the user has released the mouse button while
dragging the thumb control. Upon entry into the widgetProc procedure, the H.O. word
of the wParam argument contains the current scroll bar position.

onThumbTrack This field, if non-NULL, points at a widgetProc procedure that HOWL will call while
the user is dragging the thumb around the scroll bar. An application can use this
notification to dynamically adjust the screen during thumb movement. Upon entry into the
widgetProc procedure, the H.O. word of the wParam argument contains the current
scroll bar position. Note that this is the only notification that provides only a 16-bit value
for the thumb position; if you don’t need to use this notification, it is possible to obtain 32-
bit values for the thumb position (from the other notification calls).

onLineLeft This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on a horizontal scroll bar by pressing
the left arrow on the scroll bar. Upon entry into the widgetProc procedure, the H.O.
word of the wParam argument contains the current scroll bar position.

onLineRight This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on a horizontal scroll bar by pressing
the right arrow on the scroll bar. Upon entry into the widgetProc procedure, the H.O.
word of the wParam argument contains the current scroll bar position.

onLineDown This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on a vertical scroll bar by pressing
the down arrow on the scroll bar. Upon entry into the widgetProc procedure, the H.O.
word of the wParam argument contains the current scroll bar position.

onLineUp This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on a vertical scroll bar by pressing
the up arrow on the scroll bar. Upon entry into the widgetProc procedure, the H.O. word
of the wParam argument contains the current scroll bar position.

onEndScroll This field, if non-NULL, points at a widgetProc procedure that HOWL will call after
any scroll operation is complete. Upon entry into the widgetProc procedure, the H.O.
word of the wParam argument contains the current scroll bar position.

onPageDown This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on a vertical scroll bar by clicking on
the scroll bar between the thumb and the down arrow on the scroll bar. Upon entry into the
widgetProc procedure, the H.O. word of the wParam argument contains the current
scroll bar position.

onPageUp This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on a vertical scroll bar by clicking on
the scroll bar between the thumb and the up arrow on the scroll bar. Upon entry into the
widgetProc procedure, the H.O. word of the wParam argument contains the current
scroll bar position.

onPageLeft This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on a horizontal scroll bar by clicking
on the scroll bar between the thumb and the left arrow on the scroll bar. Upon entry into
the widgetProc procedure, the H.O. word of the wParam argument contains the current
scroll bar position.

onPageRight This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the thumb on a horizontal scroll bar by clicking
on the scroll bar between the thumb and the right arrow on the scroll bar. Upon entry into
the widgetProc procedure, the H.O. word of the wParam argument contains the current
scroll bar position.
Page 580 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
onTop This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user moves the thumb all the way to the top on a vertical scroll bar or all the
way to the left on a horizontal scroll bar. Upon entry into the widgetProc procedure, the
H.O. word of the wParam argument contains the current scroll bar position (which should
be the maximum value).

onBottom This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user moves the thumb all the way to the bottom on a vertical scroll bar or all
the way to the right on a horizontal scroll bar. Upon entry into the widgetProc
procedure, the H.O. word of the wParam argument contains the current scroll bar position
(which should be the maximum value).

lineInc This data field contains the number of positions that will be added to or subtracted from
the scroll bar thumb’s current position when the user clicks on one of the scroll bar’s
arrow buttons. Applications should not access this data field directly, they should use the
standard class accessor/mutator functions to read and write this value.

pageInc This data field contains the number of positions that will be added to or subtracted from
the scroll bar thumb’s current position when the user clicks on the scroll bar between the
thumb and one of the arrow buttons. Applications should not access this data field
directly, they should use the standard class accessor/mutator functions to read and write
this value.

curPosn This is a private field used by the class. Applications should not access it.

info This is a private field used by the class. Applications should not access it.

textColor This is the RGB color that Windows will use to draw the text on the scrollbar. This is a
private data field; applications should only access this value using the associated access
and mutator. The constructor initializes the text color to black.

bkgColor This is the RGB color that Windows will use to paint the background of the scrollbar.
This is a private data field; applications should only access this value using the associated
access and mutator. The constructor initializes the backgroun color to white.

bkgBrush This is a private data field; applications should never access it.

create_wScrollBar

This is the consructor for the wScrollBar_t class. If you call this as a class procedure
(e.g., "wScrollBar_t.create_wScrollBar") then this procedure will allocate storage for a
new wScrollBar_t object on the heap and return a pointer to that object in ESI. If you
make a standard object call to this constructor, then create_wScrollBar will initialize
that object in-place.

wtbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the scroll bar will
be drawn.

x, y, width, height: These arguments form a bounding box in which the scroll bar will be
drawn.

style: HOWL logically ORs this value with the Windows styles (w.WS_CHILD |
w.WS_VISIBLE) when creating the scroll bar. At the very least, this field should contain
w.SBS_HORZ for a horizontal scroll bar or w.SBS_VERT for a vertical scroll bar. Please
see the Windows documentation or the HLA w.hhf header file for additional scroll bar
style (SBS_*) constants.

onChange: this is the address (which can be NULL) of an onChange widgetProc
procedure. The constructor will initialize the onChange field with this value.

enable,

disable These two methods will enable or disable the scroll bar on the form. A disabled scroll bar
is still visible, but the user will be unable to interact with it.
Released to the Public Domain Page 581

HLA Standard Library
show,

hide These two methos will make a scroll bar visible or invisible on the form.

get_position This function returns the current scroll bar position as a 32-bit value in the EAX register.
Note that you can call this method from any of the event notification procedures except
onThumbTrack to obtain the true 32-bit position of the thumb control (rather than
limiting yourself to the upper 16 bits of the wParam parameter). If you call this method
from the onThumbTrack notification procedure, it will not return the current position of
the thumb, instead it will return the last position before the user started dragging the thumb
around. Sadly, there is no way to obtain a 32-bit current thumb position while dragging
the thumb.

set_position This method sets the current thumb position on the scroll bar. The argument you pass to
this method must be between the low and high range values for the scroll bar.

get_lowRange This method returns (in EAX) the current lower range for the scroll bar. This is typically
zero, but you can program any 32-bit value you desire (see set_range).

get_hiRange This method returns (in EAX) the current upper range for the scroll bar.

set_range This method lets you set the low and high range values for the scroll bar. The default range
is 0..100, but you can set any 32-bit values you like. Note that if you intend to use the
onThumbTrack notification, you should limit the range to 16-bit values.

low: the lower bound of the scroll bar range

high: the upper bound of the scroll bar range.

get_onChange,

get_onThumbPosn,

get_onThumbTrack,

get_onLineDown,

get_onLineUp,

get_onLineLeft,

get_onLineRight,

get_onEndScroll,

get_onPageDown,

get_onPageUp,

get_onPageLeft,

get_onPageRight,

get_onTop,

get_onBottom These are the accessor methods for the corresponding widgetProc pointer data fields in
this class.

get_lineInc,

get_pageInc These are the accessor methods for the corresponding data fields in the class. Applications
should always use these accessor methods to read the values of the lineInc and
pageInc fields.

set_onChange,

set_onThumbPosn,

set_onThumbTrack,

set_onLineDown,

set_onLineUp,

set_onLineLeft,

set_onLineRight,

set_onEndScroll,
Page 582 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
set_onPageDown,

set_onPageUp,

set_onPageLeft,

set_onPageRight,

set_onTop,

set_onBottom These are the mutator functions for all the widgetProc pointer fields in the class.

set_lineInc,

set_pageInc These are the mutator methods for the corresponding data fields in the class. Applications
should always use these accessor methods to write the values of the lineInc and
pageInc fields.

get_textColor,

set_textColor,

get_bkgColor,

set_bkgColor These accessor/mutator functions get and set the text and background colors that the
widget uses.

processMessage This is a private method in the class. Applications must not call this method.

 18.3.17.2 wTrackBar_t
wTrackBar_t objects are very similar in use to a scroll bar insofar as they provide a slider control that the

user can move between two extremes on the widget. However, whereas scroll bars have a specific user interface
purpose (moving the view through a window), track bars are generalized numeric input devices. Their purpose is
to input a numeric value between a low range and a high range via a slider control.

Like scroll bars, you should limit the range of trackbar responses to 16 bits if you intend to use the
onThumbTrack notification.

 wTrackBar_t:
 class inherits(wVisual_t);

 var
 align(4);
 wTrackBar_private:
 record

 onChange :widgetProc;
 onThumbPosn :widgetProc;
 onThumbTrack :widgetProc;
 onBottom :widgetProc;
 onLineDown :widgetProc;
 onLineUp :widgetProc;
 onTop :widgetProc;
 onEndtrack :widgetProc;
 onPageDown :widgetProc;
 onPageUp :widgetProc;

 endrecord;

 procedure create_wTrackBar
 (
 wtbName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
Released to the Public Domain Page 583

HLA Standard Library
 height :dword;
 style :dword;
 onChange :widgetProc
); external;

 method get_position; @returns("eax"); external;
 method set_position(position:dword); external;

 method get_lowRange; @returns("eax"); external;
 method get_hiRange; @returns("eax"); external;
 method set_range(low:dword; high:dword); external;

 method get_onChange; @returns("eax"); external;
 method get_onThumbPosn; @returns("eax"); external;
 method get_onThumbTrack; @returns("eax"); external;
 method get_onBottom; @returns("eax"); external;
 method get_onLineDown; @returns("eax"); external;
 method get_onLineUp; @returns("eax"); external;
 method get_onTop; @returns("eax"); external;
 method get_onEndtrack; @returns("eax"); external;
 method get_onPageDown; @returns("eax"); external;
 method get_onPageUp; @returns("eax"); external;

 method set_onChange(onChange:widgetProc); external;
 method set_onThumbPosn(onThumbPosn:widgetProc); external;
 method set_onThumbTrack(onThumbTrack:widgetProc); external;
 method set_onBottom(onBottom:widgetProc); external;
 method set_onLineDown(onLineDown:widgetProc); external;
 method set_onLineUp(onLineUp:widgetProc); external;
 method set_onTop(onTop:widgetProc); external;
 method set_onEndtrack(onEndtrack:widgetProc); external;
 method set_onPageDown(onPageDown:widgetProc); external;
 method set_onPageUp(onPageUp:widgetProc); external;

 override method processMessage; external;

 endclass;

onChange This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the slider on the track bar (using any means to
change the value). Upon entry into the widgetProc procedure, the H.O. word of the
wParam argument contains the current track bar position.

onThumbPosn This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the slider on the track bar by dragging the
slider. HOWL calls this procedure after the user has released the mouse button while
dragging the slider control. Upon entry into the widgetProc procedure, the H.O. word of
the wParam argument contains the current scroll bar position.

onThumbTrack This field, if non-NULL, points at a widgetProc procedure that HOWL will call while
the user is dragging the slider around the track bar. An application can use this notification
to dynamically adjust the system during slider movement. Upon entry into the
widgetProc procedure, the H.O. word of the wParam argument contains the current
track bar slider position.

onBottom This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user moves the slider all the way to the bottom on a vertical track bar or all
the way to the left on a horizontal track bar. Upon entry into the widgetProc procedure,
the H.O. word of the wParam argument contains the current track bar position (which
should be the maximum value).
Page 584 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
onLineDown This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the slider on a track bar by pressing the down
arrow or the right arrow key on the keyboard. Upon entry into the widgetProc
procedure, the H.O. word of the wParam argument contains the current track bar position.

onLineUp This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the slider on a track bar by pressing the up
arrow or left arrow key on the keyboard. Upon entry into the widgetProc procedure, the
H.O. word of the wParam argument contains the current track bar position.

onTop This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user moves the slider all the way to the top on a vertical track bar or all the
way to the left on a horizontal track bar. Upon entry into the widgetProc procedure, the
H.O. word of the wParam argument contains the current track bar position (which should
be the maximum value).

onEndTrack This field, if non-NULL, points at a widgetProc procedure that HOWL will call after
any trackbar operation is complete. Upon entry into the widgetProc procedure, the H.O.
word of the wParam argument contains the current track bar position.

onPageDown This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the slider on a vertical scroll bar by clicking on
the track bar between the slider and the left or bottom end of the track bar. Upon entry into
the widgetProc procedure, the H.O. word of the wParam argument contains the current
track bar position.

onPageUp This field, if non-NULL, points at a widgetProc procedure that HOWL will call
whenever the user changes the position of the slider on a track bar by clicking on the track
bar between the slider and the top or right side of the track bar. Upon entry into the
widgetProc procedure, the H.O. word of the wParam argument contains the current
track bar position.

create_wTrackBar

This is the consructor for the wTrackBar_t class. If you call this as a class procedure
(e.g., "wTrackBar_t.create_wTrackBar") then this procedure will allocate storage for a
new wTrackBar_t object on the heap and return a pointer to that object in ESI. If you
make a standard object call to this constructor, then create_wTrackBar will initialize
that object in-place.

wtbName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the track bar will
be drawn.

x, y, width, height: These arguments form a bounding box in which the track bar will be
drawn.

style: HOWL logically ORs this value with the Windows styles (w.WS_CHILD |
w.WS_VISIBLE | w.TBS_AUTOTICKS) when creating the scroll bar. At the very least,
this field should contain w.TBS_HORZ for a horizontal track bar or w.TBS_HORZ for a
vertical track bar. Please see the Windows documentation or the HLA w.hhf header file for
additional track bar style (TBS_*) constants.

onChange: this is the address (which can be NULL) of an onChange widgetProc
procedure. The constructor will initialize the onChange field with this value.

get_position This function returns the current track bar position as a 32-bit value in the EAX register.
Note that you can call this method from any of the event notification procedures except
onThumbTrack to obtain the true 32-bit position of the slider control (rather than limiting
yourself to the upper 16 bits of the wParam parameter). If you call this method from the
onThumbTrack notification procedure, it will not return the current position of the slider,
Released to the Public Domain Page 585

HLA Standard Library
instead it will return the last position before the user started dragging the slider around.
Sadly, there is no way to obtain a 32-bit current thumb position while dragging the thumb.

set_position This method sets the current thumb position on the track bar. The argument you pass to
this method must be between the low and high range values for the track bar.

get_lowRange This method returns (in EAX) the current lower range for the track bar. This is typically
zero, but you can program any 32-bit value you desire (see set_range).

get_hiRange This method returns (in EAX) the current upper range for the track bar.

set_range This method lets you set the low and high range values for the track bar. The default range
is 0..100, but you can set any 32-bit values you like. Note that if you intend to use the
onThumbTrack notification, you should limit the range to 16-bit values.

low: the lower bound of the track bar range

high: the upper bound of the track bar range.

get_onChange,

get_onThumbPosn,

get_onThumbTrack,

get_onLineDown,

get_onLineUp,

get_onLineLeft,

get_onLineRight,

get_onEndtrack,

get_onPageDown,

get_onPageUp,

get_onPageLeft,

get_onPageRight,

get_onTop,

get_onBottom These are the accessor methods for the corresponding widgetProc pointer data fields in
this class.

set_onChange,

set_onThumbPosn,

set_onThumbTrack,

set_onLineDown,

set_onLineUp,

set_onLineLeft,

set_onLineRight,

set_onEndtrack,

set_onPageDown,

set_onPageUp,

set_onPageLeft,

set_onPageRight,

set_onTop,

set_onBottom These are the mutator functions for all the widgetProc pointer fields in the class.

processMessage This is a private method in the class. Applications must not call this method.
Page 586 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 18.3.18 Up/Down Arrows
An up/down arrow control is a pair of (stacked) arrow buttons that that user can click on in order to

increment or decrement a value. Up/down arrow widgets can be stand-alone or they can be attached to a "buddy"
edit box widget (wUpDownEditBox_t widgets_. When attached to a buddy edit box, the up/down arrow control
reflects the current value of the control in the edit box.

 18.3.18.1 wUpDown_t
The wUpDown_t class is used to create up/down arrow objects on a form.

 wUpDown_t:
 class inherits(wClickable_t);

 procedure create_wUpDown
 (
 wudName :string;
 parent :dword;
 alignment :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 lowerRange :dword;
 upperRange :dword;
 initialPosn :dword;
 onClick :widgetProc
); external;

 method get_lowerRange; @returns("eax"); external;
 method get_upperRange; @returns("eax"); external;
 method get_position; @returns("eax"); external;

 method set_lowerRange(lowerRange:word); external;
 method set_upperRange(upperRange:word); external;
 method set_position(position :word); external;

 override method processMessage; external;

 endclass;

create_wUpDown

This is the consructor for the wUpDown_t class. If you call this as a class procedure (e.g.,
"wUpDown_t.create_wUpDown") then this procedure will allocate storage for a new
wUpDown_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wUpDown will initialize that object
in-place.

wudName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the track bar will
be drawn.

alignment: this is one of the following Up/Down window styles:

UDS_ALIGNLEFT Positions the up-down control next to the left edge of
the buddy window. The buddy window is moved to
the right and its width decreased to accommodate the
width of the up-down control.

UDS_ALIGNRIGHT Positions the up-down control next to the right edge
of the buddy window. The width of the buddy
Released to the Public Domain Page 587

HLA Standard Library
window is decreased to accommodate the width of the
up-down control.

UDS_ARROWKEYS Causes the up-down control to increment and
decrement the position when the UP ARROW and
DOWN ARROW keys are pressed.

UDS_AUTOBUDDY Automatically selects the previous window in the Z
order as the up-down control's buddy window.

UDS_HORZ Causes the up-down control's arrows to point left and
right instead of up and down.

UDS_NOTHOUSANDS Does not insert a thousands separator between every
three decimal digits.

UDS_SETBUDDYINT Causes the up-down control to set the text of the
buddy window (using the WM_SETTEXT message)
when the position changes. The text consists of the
position formatted as a decimal or hexadecimal string.

UDS_WRAP Causes the position to "wrap" if it is incremented or
decremented beyond the ending or beginning of the
range.

x, y, width, height: These arguments form a bounding box in which the up/down
arrow will be drawn. If buddy contains a non-NULL
value, then Windows will ignore these values and
will, instead, attach the arrows to the buddy edit box.

lowerRange: This is the minimum value that the up/down arrow control will decrement
to. This value is typically zero, but it can be any 16-bit value that is less than the
upperRange value. If the up/down control’s current value is equal to lowerRange and
the user presses on the down arrow, Windows will ignore the decrement request.

upperRange: This is the maximum value that the up/down arrow control will increment
to. This value can be any 16-bit value that is greater than the lowerRange value. If the
up/down control’s current value is equal to upperRange and the user presses on the up
arrow, Windows will ignore the increment request.

initialPosn: This is the initial value of the up/down arrow control. It must be a 16-bit
value in the range lowerRange..upperRange.

onClick: this is the address (which can be NULL) of an onClick widgetProc procedure.
The constructor will initialize the onClick field with this value. (Note that the onClick
field is inherited from the wClickable_t parent class).

get_lowerRange This method retrieves the 16-bit lower range value for the up/down arrow control. It
returns this 16-bit value (zero extended) in the EAX register.

get_upperRange This method retrieves the 16-bit upper range value for the up/down arrow control. It
returns this 16-bit value (zero extended) in the EAX register.

get_position This method retrieves the 16-bit position value for the up/down arrow control. It returns
this 16-bit value (zero extended) in the EAX register.

set_lowerRange This method sets the 16-bit lower range value for the up/down arrow control.
Applications should limit the parameter to a 16-bit value.

set_upperRange This method sets the 16-bit upper range value for the up/down arrow control.
Applications should limit the parameter to a 16-bit value.

set_position This method sets the 16-bit position value for the up/down arrow control. Applications
should limit the parameter to a 16-bit value.

processMessage This is a private method. Applications must not call this method.

Page 588 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 18.3.18.2 wUpDownEditBox_t
The wUpDownEditBox_t class is used to create a combination edit box and up/down arrow on a form.

 wUpDownEditBox_t:
 class inherits(wabsEditBox_t);
 var
 wUpDownEditBox_private:
 record

 lowerRange :dword;
 upperRange :dword;
 upDownHandle :dword;
 upDownStyle :dword;
 onUpDown :widgetProc;

 endrecord;

 procedure create_wUpDownEditBox
 (
 wudName :string;
 initialTxt :string;
 parent :dword;
 style :dword;
 upDownStyle :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 lowerRange :dword;
 upperRange :dword;
 initialPosn :dword;
 onChange :widgetProc;
 onUpDown :widgetProc
); external;

 method get_lowerRange; @returns("eax"); external;
 method get_upperRange; @returns("eax"); external;
 method get_position; @returns("eax"); external;

 method set_lowerRange(lowerRange:word); external;
 method set_upperRange(upperRange:word); external;
 method set_position(position :word); external;

 override method show; external;
 override method hide; external;
 override method enable; external;
 override method disable; external;

 override method processMessage; external;

 endclass;

create_wUpDownEditBox

This is the consructor for the wUpDownEditBox_t class. If you call this as a class
procedure (e.g., "wUpDownEditBox_t.create_wUpDown") then this procedure will
allocate storage for a new wUpDownEditBox_t object on the heap and return a pointer to
that object in ESI. If you make a standard object call to this constructor, then
create_wUpDown will initialize that object in-place.
Released to the Public Domain Page 589

HLA Standard Library
wudName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parent: this is the handle of the wView_t or wForm_t object on which the track bar will
be drawn.

alignment: this is one of the following Up/Down window styles:

UDS_ALIGNLEFT Positions the up-down control next to the left edge of
the buddy window. The buddy window is moved to
the right and its width decreased to accommodate the
width of the up-down control.

UDS_ALIGNRIGHT Positions the up-down control next to the right edge
of the buddy window. The width of the buddy
window is decreased to accommodate the width of the
up-down control.

UDS_ARROWKEYS Causes the up-down control to increment and
decrement the position when the UP ARROW and
DOWN ARROW keys are pressed.

UDS_AUTOBUDDY Automatically selects the previous window in the Z
order as the up-down control's buddy window.

UDS_HORZ Causes the up-down control's arrows to point left and
right instead of up and down.

UDS_NOTHOUSANDS Does not insert a thousands separator between every
three decimal digits.

UDS_SETBUDDYINT Causes the up-down control to set the text of the
buddy window (using the WM_SETTEXT message)
when the position changes. The text consists of the
position formatted as a decimal or hexadecimal string.

UDS_WRAP Causes the position to "wrap" if it is incremented or
decremented beyond the ending or beginning of the
range.

x, y, width, height: These arguments form a bounding box in which the up/down
arrow will be drawn. If buddy contains a non-NULL
value, then Windows will ignore these values and
will, instead, attach the arrows to the buddy edit box.

lowerRange: This is the minimum value that the up/down arrow control will decrement
to. This value is typically zero, but it can be any 16-bit value that is less than the
upperRange value. If the up/down control’s current value is equal to lowerRange and
the user presses on the down arrow, Windows will ignore the decrement request.

upperRange: This is the maximum value that the up/down arrow control will increment
to. This value can be any 16-bit value that is greater than the lowerRange value. If the
up/down control’s current value is equal to upperRange and the user presses on the up
arrow, Windows will ignore the increment request.

initialPosn: This is the initial value of the up/down arrow control. It must be a 16-bit
value in the range lowerRange..upperRange.

onClick: this is the address (which can be NULL) of an onClick widgetProc procedure.
The constructor will initialize the onClick field with this value. (Note that the onClick
field is inherited from the wClickable_t parent class).

get_lowerRange This method retrieves the 16-bit lower range value for the up/down arrow control. It
returns this 16-bit value (zero extended) in the EAX register.

get_upperRange This method retrieves the 16-bit upper range value for the up/down arrow control. It
returns this 16-bit value (zero extended) in the EAX register.
Page 590 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
get_position This method retrieves the 16-bit position value for the up/down arrow control. It returns
this 16-bit value (zero extended) in the EAX register.

set_lowerRange This method sets the 16-bit lower range value for the up/down arrow control.
Applications should limit the parameter to a 16-bit value.

set_upperRange This method sets the 16-bit upper range value for the up/down arrow control.
Applications should limit the parameter to a 16-bit value.

set_position This method sets the 16-bit position value for the up/down arrow control. Applications
should limit the parameter to a 16-bit value.

processMessage This is a private method. Applications must not call this method.

 18.3.19 Icons
Icons are generally 16x16 or 32x32 bitmapped objects drawn on the screen.

 18.3.19.1 wIcon_t
A wIcon_t object on a form can draw a user-defined icon or a system icon.

 wIcon_t:
 class inherits(wSurface_t);

 var
 align(4);
 wIcon_private:
 record

 iconName :string;
 iconHandle :dword;

 endrecord;

 procedure create_wIcon
 (
 wiName :string;
 iconName :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 bkgColor :dword
); external;

 method get_iconName; @returns("eax"); external;
 method load_icon(iconName:string); external;
 override method destroy; external;
 override method processMessage; external;

 endclass;

iconName This is either the name of an icon resource within the executable file, or a special numeric
value (less than $1_0000) that specifies a system icon. Note that this field does not
contain the name of an icon file on the disk. Applications should not set the value of this
field directly. Instead, they should use the constructor or the load_icon method to set the
icon name.

iconHandle This is a handle for the icon resource associated with thie wIcon_t object. This is a
private field and applications should not read or write its value.
Released to the Public Domain Page 591

HLA Standard Library
create_wIcon This is the consructor for the wIcon_t class. If you call this as a class procedure (e.g.,
"wIcon_t.create_wIcon") then this procedure will allocate storage for a new wIcon_t
object on the heap and return a pointer to that object in ESI. If you make a standard object
call to this constructor, then wIcon will initialize that object in-place.

wiName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

iconName: this is the name of the icon resource in the executable file to associate with the
icon (if this value is a string), or it is a value less than $1_0000 that specifies a system icon
value. The following are valid non-string values to supply to this parameter:
w.IDI_APPLICATION, w.IDI_ASTERISK, w.IDI_EXCLAMATION, w.IDI_HAND,
w.IDI_QUESTION, and w.IDI_WINLOGO.

parent: this is the handle of the wView_t or wForm_t object on which the icon will be
drawn.

x, y, width, height: These arguments form a bounding box in which the up/down arrow
will be drawn. If buddy contains a non-NULL value, then Windows will ignore these
values and will, instead, attach the arrows to the buddy edit box.

bkgColor: this is the RGB background color that HOWL will fill the bounding rectangle
with if the bounding rectangle is larger than the icon.

load_icon This method loads the icon resource whose name you specify as the string parameter into
the icon object. The parameter must either be the (string) name of an icon resource in the
executable file or one of the system-defined icon constants (see the discussion for the
constructor).

destroy This is the destructor for the wIcon_t object. Applications won’t normally call this
destructor for icons attached to some form (or other container) as destroying that container
will automatically invoke the destructor for the icon. However, if you create a stand-alone
icon object and don’t attach it to some container object, then you should call the icon’s
destructor when you are done with the icon to free the associated system resources.

processMessage This is a private method. Applications must not call it.

 18.3.20 Text
HOWL provides two classes for dealing with text: the wFont_t class and the wLabel_t class. Unlike most

concrete classes in HOWL, wFont_t objects are not widgets (that is, controls that appear visually on a form).
Font objects are associated with wLabel_t objects (which do appear on a form) and other text, but are not visual
items themselves.

 18.3.20.1 wFont_t
Font objects represent a particular typeface for use by wLabel_t and other text objects in HOWL. Note that

wFont_t objects are somewhat unique amongst the HOWL concrete classes insofar as there is no statement in
the HOWL declarative language to create a font object. In general, an application will create all the fonts it
needs in the appStart procedure and it will call the destructors for those font objects in the appTerminate
procedure.

 wFont_t:
 class inherits(wBase_t);

 var
 align(4);
 wFont_private:
 record

 family :byte;
Page 592 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 bold :boolean;
 italic :boolean;
 underline :boolean;
 strikeout :boolean;
 monospaced :boolean;
 align(4);

 faceName :string;
 size :uns32;

 endrecord;

 procedure create_wFont
 (
 wfName :string;
 parentHandle :dword;
 faceName :string;
 family :byte;
 size :uns32;
 bold :boolean;
 italic :boolean;
 underline :boolean;
 strikeout :boolean;
 monospaced :boolean
); external;

 override method destroy; external;

 // Accessor functions:

 method get_facename; @returns("eax"); external;
 method get_size; @returns("eax"); external;
 method get_family; @returns("al"); external;
 method get_bold; @returns("al"); external;
 method get_italic; @returns("al"); external;
 method get_underline; @returns("al"); external;
 method get_strikeout; @returns("al"); external;
 method get_monospaced; @returns("al"); external;

 endclass;

faceName This string is the name of the Windows typeface to use for the font. This is a string such as
"Courier New" or "Times New Roman". If this field is NULL or is the empty string, then
Windows will pick an appropriate font that matches the other font characteristics. If
Windows cannot find the specified font name, it will find the closest one that matches the
font characteristics you provide. Applications should not write values to this field.

size This is the size, in points, for the typeface. Applications should not write values to this
field.

family This is one of the following constants:

w.FF_DECORATIVE Novelty fonts. Old English is an example.

w.FF_DONTCARE Don't care or don't know.

w.FF_MODERN Fonts with constant stroke width, with or without serifs. Pica,
Elite, and Courier New® are examples.

w.FF_ROMAN Fonts with variable stroke width and with serifs. MS® Serif is an
example.
Released to the Public Domain Page 593

HLA Standard Library
w.FF_SCRIPT Fonts designed to look like handwriting. Script and Cursive are
examples.

w.FF_SWISS Fonts with variable stroke width and without serifs. MS Sans
Serif is an example.

 Applications should not write values to the family field.

bold True for boldfaced fonts, false for normal weight fonts. Applications should not write
values to this field.

italic True for italic slant fonts, false for normal fonts. Applications should not write values to
this field.

underline True for underlined fonts, false for normal fonts. Applications should not write values to
this field.

strikeout True for strikeout fonts, false for normal fonts. Applications should not write values to
this field.

monospaced True for monospaced fonts, false for proportional fonts. Applications should not write
values to this field.

create_wFont This is the consructor for the wFont_t class. If you call this as a class procedure (e.g.,
"wFont_t.create_wFont") then this procedure will allocate storage for a new wFont_t
object on the heap and return a pointer to that object in ESI. If you make a standard object
call to this constructor, then create_wFont will initialize that object in-place.

wfName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

The remaining parameters all correspond to the data fields for this class. See their
descriptions for more details. Calling the constructor is the only legal way to write values
to the wFont_t class’ data fields.

destroy This is the destructor for the wFont_t class. Because fonts aren’t normally attached to a
form (and you cannot create them via the HOWL declarative language), it is usually the
applications responsibility to call the destructor for a font when the application is done
using it. Alternately, an application can insert a font into a container object and let that
container destroy the font object when the container is destroyed.

 18.3.20.2 wLabel_t
A wLabel_t object displays static text on a form. Actually, "static" is a bit of a misnomer because an

application can change the text will a method call, but Windows, HOW, and the user do not change this text
behind the application’s back.

 wLabel_t:
 class inherits(wVisual_t);
 var
 align(4);
 wLabel_private:
 record

 caption :string;
 font :wFont_p;
 alignment :dword;
 foreColor :dword;

 endrecord;

 procedure create_wLabel
 (
 wlName :string;
Page 594 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 caption :string;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 alignment :dword;
 foreColor :dword;
 bkgColor :dword
); external;

 override method destroy; external;
 override method processMessage; external;

 method get_font; @returns("eax"); external;
 method get_caption; @returns("eax"); external;
 method a_get_caption; @returns("eax"); external;
 method get_foreColor; @returns("eax"); external;

 method set_font(font:wFont_p); external;
 method set_caption(caption:string); external;
 method set_foreColor(foreColor:dword); external;

 endclass;

caption This data field points at the textual data that the wLabel_t object will display on a form.
Applications should never read or write this data field directly, they should always use the
get_caption and set_caption accessor/mutator methods to manipulate this string.

font This is a pointer to a wFont_t object or the value NULL. If this field contains NULL,
Windows will pick an appropriate system font and use that to draw the label’s text. If this
field contains a pointer to a wFont_t object, this Windows will use that particular font to
draw the label’s text. Applications should never read or write this data field directly, they
should always use the get_font and set_font accessor/mutator methods to manipulate this
value.

alignment Applications should not write to this field. It’s value is set by the constructor. This field
should contain one of the following constants:

w.DT_BOTTOM Bottom-justifies text. This value must be combined with
DT_SINGLELINE.

w.DT_CENTER Centers text horizontally.

w.DT_EXPANDTABS Expands tab characters. The default number of characters
per tab is eight.

w.DT_LEFT Aligns text to the left.

w.DT_NOPREFIX Turns off processing of prefix characters. Normally,
DrawText interprets the mnemonic-prefix character & as a
directive to underscore the character that follows, and the
mnemonic-prefix characters && as a directive to print a
single &. By specifying DT_NOPREFIX, this processing
is turned off.

w.DT_RIGHT Aligns text to the right.

w.DT_SINGLELINE Displays text on a single line only. Carriage returns and
linefeeds do not break the line.

w.DT_TOP Top-justifies text (single line only).

w.DT_VCENTER Centers text vertically (single line only).
Released to the Public Domain Page 595

HLA Standard Library
w.DT_WORDBREAK Breaks words. Lines are automatically broken between
words if a word would extend past the edge of the
rectangle specified by the lpRect parameter. A carriage
return-linefeed sequence also breaks the line.

foreColor This is the foreground color for the text (the RGB color used to draw the actual
characters). Applications should never read or write this data field directly, they should
always use the get_foreColor and set_foreColor accessor/mutator methods to manipulate
this value.

create_wLabel This is the consructor for the wLabel_t class. If you call this as a class procedure (e.g.,
"wLabel_t.create_wLabel") then this procedure will allocate storage for a new wLabel_t
object on the heap and return a pointer to that object in ESI. If you make a standard object
call to this constructor, then create_wLabel will initialize that object in-place.

wlName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

caption: this is string data HOWL will associate with the label object. Note that HOWL
will make an internal copy (on the heap) of this string.

parent: this is the handle of the wView_t or wForm_t object on which the label will be
drawn.

x, y, width, height: These arguments form a bounding box in which the up/down arrow
will be drawn. If buddy contains a non-NULL value, then Windows will ignore these
values and will, instead, attach the arrows to the buddy edit box.

alignment: this is one of the alignment constants described under the alignment field,
earlier. It this field is zero, w.DT_LEFT is the default value.

foreColor: this is an RGB value that specifies the foreground color for the label.

bkgColor: this is an RGB value that specifies the background color for the label.

destroy This is the destructor for the label class. Normally, the container form holding the label
will call this destructor automatically when you destroy the form. If you create a label
manually and don’t insert it into the widget list of a container object, then you will need to
call this destructor yourself.

processMessage This is a private method. Applications should not call this method.

get_font This is the accessor method that returns a pointer to the wFont_t object (or NULL)
pointed at by the font data field.

get_caption This returns the caption string pointer in EAX for read-only access. The application must
not modify this string or HOWL will display inconsistent results.

a_get_caption This method returns a pointer to a copy of the caption string (that it allocates on the
heap) in the EAX register. It is the caller’s responsibility to free the storage associated
with this string when it is done using the string data.

get_foreColor This accessor method returns the current foreground color that the wLabel_t object uses
to draw the text.

set_font This method is the mutator function for the font data field. Applications should always
call this method to change the font of a wLabel_t object.

set_caption This method is the mutator function for the caption data field. Applications should
always call this method to change the string associated with a wLabel_t object.

set_foreColor This method is the mutator function for the foreColor data field. Applications should
always call this method to change the foreground color associated with a wLabel_t
object.
Page 596 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
 18.3.21 Views, Windows, and Tab Pages
A view is a container object that is also a surface upon which you can draw or place other widgets. In this

sense, a view is very similar to a wForm_t object. Actually, a view is equivalent to the client area of a wForm_t
object; that is, it’s the application window without the title bar or system menu components.

 18.3.21.1 wTabPage_t
The wTabPage_t class is basically a concrete implementation of the abstract window_t class.

 wTabPage_t:
 class inherits(window_t);

 var
 align(4);
 wTabPage_private:
 record

 pageHandler :widgetProc;

 endrecord;

 procedure create_wTabPage
 (
 wpName :string;
 parentWindowHandle :dword;
 handler :widgetProc;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 fillColor :dword
); external;

 override method processMessage; external;

 endclass;

pageHandler This is a widgetProc pointer to a user-defined processMessage function for the
wTabPage_t object. If this pointer contains NULL, then HOWL will invoke the parent
(window_t) processMessage handler. If all a wForm_t object is doing is containing other
widgets, this is all that is necessary. However, if you’re going to draw on the wTabPage_t
object, then you will have to write your own processMessage function and intercept
w.WM_PAINT and other messages. A discussion of the actual pageHandler procedure
appears a little later in this section.

create_wTabPage This is the consructor for the wTabPage_t class. If you call this as a class procedure (e.g.,
"wTabPage_t.create_wTabPage") then this procedure will allocate storage for a new
wTabPage_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wTabPage will initialize that object in-
place.

wpName: HOWL assigns this string to the _name data field of the object. This string’s
value should be constant over the execution lifetime of the newly initialized object.

parentWindowHandle: this is the handle of the wTabPage_t or wForm_t object on
which the wTabPage_t object will be placed.

x, y, width, height: These arguments form a bounding box in which the wTabPage_t
object will be drawn.
Released to the Public Domain Page 597

HLA Standard Library
fillColor: this is an RGB value that specifies the background color for the window.

processMessage This is a private method. Applications must not call it.

The pageHandler widgetProc needs some additional explanation. To begin with, although this pointer
type is widgetProc, technically it ought to have the same prototype as the processMessage method (hwnd,
uMsg, wParam, and lParam parameters). To overcome the difference in prototypes, HOWL passes to the
pageHandler procedure the uMsg parameter value in the EAX register. The hwnd (window handle) argument is
easily accessible as the handle field of the wTabPage_t object (accessible via the thisPtr parameter).

The pageHandler procedure is basically the Windows’ wndproc procedure that handles the messages for the
wTabPage_t object (that is, it’s equivalent to a wTabPage_t.processMessage function). If you want to draw
on the wTabPage_t surface, you’ll need to intercept Windows’ messages such as w.WM_PAINT and so on.
Most of the time, you’ll only want to handle a few of the messages sent to a wTabPage_t object yourself and
you’ll want to pass the rest of them on to a default message handler. In a pure Win32 application, you’d
accomplish this by calling the w.DefWindowProc procedure. In an object-oriented system such as HOWL,
however, what you really want to do is call the parent class’ message handler (that is,
window_t.processMessage in the case of a wTabPage_t object). Unfortunately, it’s difficult to do this
directly, so HOWL cheats and defines a special class procedure in the window_t class that you can call directly
that is an alias for the window_t.processMessage method. This class procedure is called
window_t.view_t_processMessage (so there is no mistaking its purpose). If ESI contains a pointer to the
wTabPage_t object (and it must when you call window_t.view_t_processMessage), then you can call this
procedure with the following statement:

(type window_t [esi]).view_t_processMessage

Here is a sample pageHandler procedure that does exactly the same thing as would happen if the
pageHandler pointer were NULL (which is to call the window_t.processMessage method):

simplePH:widgetProc;
begin simplePH;

mov(thisPtr, esi); // Technically not needed, ESI contains this already
(type window_t [esi]).view_t_processMessage // Call special alias proc
(

(type wTabPage_t [esi]).handle, // Handle to the wTabPage_t window
eax, // Message code passed to us in EAX
wParam, // Pass on the wParam value
lParam // Pass on the lParam value

);

end simplePH;

Of course, it doesn’t make much sense to do nothing more than call the view_t_processMessage procedure.
You could leave the pageHandler NULL and the wTabPage_t class would automatically do this for you (more
efficiently, too). In general, you’ll check for a few messages you need to handle and call
view_t_processMessage as the default handler, e.g.,:

typicalPH:widgetProc;
begin typicalPH;

if(eax = someMessage) then

// code to handle someMessage

elseif(eax = someOtherMessage) then

// code to handle someOtherMessage

else // Default case

mov(thisPtr, esi); // Technically not needed, ESI contains this already
(type window_t [esi]).view_t_processMessage // Call special alias proc
Page 598 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
(
(type wTabPage_t [esi]).handle, // Handle to the wTabPage_t window
eax, // Message code passed to us in EAX
wParam, // Pass on the wParam value
lParam // Pass on the lParam value

);

endif;

end typicalPH;

Please see the appropriate Windows documentation for details on how to handle message in a wndproc
(message handling) procedure.

 18.3.21.2 wView_t
wView_t objects are a concrete implementation of the wSurface_t class. You use wView_t objects to

create bordless windows on which to draw things. Note that wView_t is not a container class (like window_t),
so you cannot place other objects on a wView_t window. Please see the discussion of the wSurface_t class for
more details concerning the capabilities of a wView_t object.

 wView_t:
 class inherits(wSurface_t);

 procedure create_wView
 (
 wsName :string;
 exStyle :dword;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 bkgColor :dword;
 visible :boolean
); external;

 endclass;

 18.3.21.3 window_t
The window_t type is functionally equivalent to wSurface_t with on major difference: the window_t

class is derived from wContainer_t rather than directly from wVisual_t, so window_t objects can contain
other widgets.

 window_t:
 class inherits(wContainer_t);

 var
 align(4);
 window_private:
 record

 // onPaint event pointer:

 onPaint :widgetProc;

 endrecord;
Released to the Public Domain Page 599

HLA Standard Library

 procedure create_window
 (
 wwName :string;
 caption :string;
 exStyle :dword;
 style :dword;
 parent :dword;
 x :dword;
 y :dword;
 width :dword;
 height :dword;
 bkgColor :dword;
 visible :boolean
); external;

 override method destroy; external;
 override method processMessage; external;
 override method onClose; external;
 override method onCreate; external;

 method get_onPaint; @returns("eax"); external;
 method set_onPaint(onPaint:widgetProc); external;

 procedure view_t_processMessage
 (
 hwnd :dword;
 uMsg :dword;
 wParam :dword;
 lParam :dword
); external("window_t_processMessage");

 endclass;

onPaint This widgetProc pointer is either NULL, or it points at a widgetProc procedure that
HOWL will call whenever Windows sends the form a w.WM_PAINT message.

destroy This method is the destructor for the window_t class. Because the window_t class is
derived from wContainer_t, invoking this destructor will also (recursively) invoke the
destructors of all the widgets held by the window_t object. This destructor will also free
up the system brush resource (held by _bkgBrush) and free any storage associated with
the window_t object. As is true for all abstract base classes, an application will not
directly call this destructor method. Instead, the application will call the destructor of a
derived class which, in turn, will call this destructor.

processMessage,

onClose,

onCreate These are private methods in the class. Applications should not call them.

get_onPaint

set_onPaint These are the accessor/mutator methods for the onPaint field. Applications must use
these methods to access or modify the value of the onPaint field.

view_t_processMessage

Most of the time the rule is that applications do not call the processMessage method. In
the case of the wTabPage_t derived class, however, there is a special case where an
application needs to call the window_t.processMessage method. Normally, this is a
somewhat difficult thing to do (especially from a widgetProc, from where the call is
going to be made). The view_t_processMessage class procedure is actually an alias
Page 600 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
for the window_t.processMessage method, so that a wTabPage_t object’s
pageHandler can call window_t.processMessage in that special case. In general,
applications should never call view_t_processMessage except in this one special case.
Please see the discussion of wTabPage_t for more details.

 18.3.22 Timers
HOWL provides a wTimer_t class that lets you create "one-shot" or "periodic" timers in your HOWL

applications.

 18.3.22.1 wTimer_t
wTimer_t objects are non-visual objects that can automatically call a widgetProc for you whenever a

certain amount of time (in milliseconds) elapses. wTimer_t objects are useful for passing control to your code
on a periodic basis even if there are no user interface interactions with your application’s form.

Timers are unique amongst the widgets. You will notice that the wTimer_t class is derived from the
wVisual_t class. However, wTimer_t objects aren’t exactly visual because such objects don’t appear visually
on a form. wTimer_t objects need to be actual window_t objects so that they can have a Windows’ wndProc
message handler that can receive messages from a timing thread and appear in a widget list of some container
object (the window itself is just a 1x1 pixel window at position (0,0) on your form). Normally, this window is
hidden from the user. You should take care not to call the show method to make it visible.

wTimer_t objects operate in one of two modes: periodic and one-shot. If you initialize a wTimer_t object
with the constant wTimer_t.oneShot and then start the timer, it will run for the specified amount of time (in
milliseconds) and then call an onTimeOut widgetProc exactly once. This is useful if you need exactly one
notification at some future time.

wTimer_t objects can also operate in periodic mode. If you initialize the wTimer_t object with the
wTimer_t.periodic constant, then it will automatically call an onTimeOut widgetProc (approximately)
every period milliseconds until you explicitly stop the timer.

Note that although a wTimer_t object spawns a thread to handling the timing chores, that thread does not
call any HLA Standard Library code, and invoking the onTimeOut widgetProc is done via a
w.PostMessage Win32 call, so you don’t have to compile the program with the HLA "-thread" command-line
parameter and you don’t have to worry about multi-threaded synchronization. The onTimeOut procedure always
executes in the same thread as your main program.

 wTimer_t:
 class inherits(wVisual_t);

 const
 oneShot := 0;
 periodic := 1;

 static
 messageCode :dword := 0;

 var
 align(4);
 wTimer_private:
 record

 // Timeout value in milliseconds:

 period :dword;

 // oneShot or periodic

 timing :dword;

 // Widget proc to call on time out:

Released to the Public Domain Page 601

HLA Standard Library
 onTimeOut :widgetProc;

 // 1 = run, 0 = wait

 trigger :dword;

 // Win32 thread handle for timer

 threadHandle :dword;

 endrecord;

 procedure create_wTimer
 (
 timerName :string;
 parentHandle :dword;
 periodInMsec :dword;
 timing :dword;
 onTimeOut :widgetProc
); external;

 override method destroy; external;
 override method processMessage; external;

 method start; external;
 method stop; external;

 method get_onTimeOut; @returns("eax"); external;
 method set_onTimeOut(onTimeOut:widgetProc); external;
 method get_period; @returns("eax"); external;
 method set_period(period:dword); external;
 method get_timing; @returns("eax"); external;
 method set_timing(timing:dword); external;

 // Apps must never call this, it is put here for
 // convenience (to be able to use "this"):

 procedure _timerThread(wTimerObj:wTimer_p); external;

 endclass;

wTimer_t.oneShot This is the constant you specify as the timing argument to create_wTimer or
set_timing if you want to create a one-shot timer object.

wTimer_t.periodic

This is the constant you specify as the timing argument to create_wTimer or
set_timing if you want to create a free-running periodic timer object.

period This is the time, in milliseconds, that a wTimer_t object will delay before posting a
message that will call the onTimeOut widgetProc. This is a private data field.
Applications should not access it directly but should, instead, use the provided accessor/
mutator methods.

timing This field determines the type of the timer. It will contain one of the following constants:

wTimer_t.oneShot: the timer, when started, will call the onTimeOut widgetProc
exactly once and then disable itself.

wTimer_t.periodic: the timer, when started, will call the onTimeOut widgetProc
about every period milliseconds until you explicitly stop the timer.
Page 602 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
This is a private data field. Applications should not access it directly but should, instead,
use the provided accessor/mutator methods.

onTimeOut This is the address of the widgetProc that HOWL will call when the timer times out. If this
field is NULL, HOWL will not call any widgetProc and the timeout will go unnoticed by
the application. This is a private data field. Applications should not access it directly but
should, instead, use the provided accessor/mutator methods.

_trigger This is an internal field that the wTimer_t object uses to communicate between the main
thread and the timer thread. Applications should never access this field.

_threadHandle This is an internal field that the wTimer_t object uses to communicate between the main
thread and the timer thread. Applications should never access this field.

create_wTimer This is the class constructor for wTimer_t objects. If you call this as a class procedure
(e.g., "wTimer_t.create_wTimer") then this procedure will allocate storage for a new
wTimer_t object on the heap and return a pointer to that object in ESI. If you make a
standard object call to this constructor, then create_wTimer will initialize that object in-
place. Note that calling the constructor does not start the timer running. You must
explicitly call the wTimer_t object’s start method to start the timer running. This
procedure has the following parameters:

timerName: a string specifying the timer variable’s name (in HLA).

parentHandle: the handle of the wForm object on which the timer is attached.

periodInMsec: this is the initial timeout period for the timer. The constructor will
initialize the period field with this value. You can use the accessor/mutator methods to
change this value later.

timing: this is the initial type of the timer. This value should either be
wTimer_t.oneShot or wTimer_t.periodic. You can use the accessor and mutator
methods to change the timer type at a later time.

onTimeOut: this is either NULL or the address of a widgetProc that the timer will call
whenever the timer times out. You can use the accessor and mutator methods to change
the timeout widgetProc at a later time.

destroy This is the destructor for the wTimer_t object. Normally, wTimer_t objects are inserted
onto a widget list and the container automatically calls the destructor when the container is
destroyed. However, if you create a wTimer_t object and you don’t attach it to some
container’s widget list, then you will need to explicitly call the destructor to free up the
timer object.

processMessage This is an internal procedure. Applications must not call it.

get_onTimeOut,

get_period,

get_timing These are the accessor methods for the corresponding data fields in the class. Applications
should call these methods to access the data fields rather than reading their values directly.

set_onTimeOut,

set_period,

set_timing These are the mutator methods for the corresponding data fields in the class. Applications
should call these methods to access the data fields rather than writing their values directly.
Note that you should take care when setting these values while a timer is actually running.
Although access to these objects is synchronized (you don’t have to worry about thread
problems), changing these values while a timer is operating can make your programs
difficult to read and modify and it can introduce some obscure bugs.

start This starts the timer. If the timer was already running, this will kill the current timer thread
and start a new one. When the timer expires (after no sooner than period milliseconds),
the timer thread will post a message to the wTimer_t object to tell it to call the
onTimeOut widgetProc. Note that the onTimeOut procedure could actually be called
much later, based on the number of messages in the Windows’ message queue and the
Released to the Public Domain Page 603

HLA Standard Library
time it takes to process all those messages. Do not assume that exactly period
milliseconds have passed since the call to start when your onTimeOut procedure begins
execution. It could actually be much later than this.

stop This method immediately stops the timer. This generally means that (if the timer is
running) there will be no call to the onTimeOut procedure. However, the timer could have
already posted an onTimeOut call in the message queue, so you should not assume that
there will be no call to onTimeOut after you call stop.
Page 604 Version: 5/24/10 Written by Randall Hyde

	18 HOWL: The HLA Object Windows Library
	18.1 The HOWL Application Framework
	18.2 The HOWL Declarative Language
	18.2.1 wForm
	18.2.2 wMainMenu..endwMainMenu
	18.2.2.1 wMenuItem
	18.2.2.2 wMenuSeparator
	18.2.2.3 wSubMenu..endwSubMenu
	18.2.2.4 Menu Example

	18.2.3 wTab
	18.2.4 Check Boxes
	18.2.4.1 wCheckable
	18.2.4.2 wCheckBox
	18.2.4.3 wCheckBox3
	18.2.4.4 wCheckBox3LT
	18.2.4.5 wCheckBoxLT

	18.2.5 wComboBox
	18.2.6 wDragListBox
	18.2.7 wEditBox
	18.2.8 wEllipse
	18.2.9 wIcon
	18.2.10 wGroupBox..endwGroupBox
	18.2.11 wLabel
	18.2.12 wListBox
	18.2.13 wPasswdBox
	18.2.14 wPie
	18.2.15 wPolygon
	18.2.16 wBitmap
	18.2.17 wProgressBar
	18.2.18 wPushButton
	18.2.19 Radio Button Objects
	18.2.19.1 wRadioButton
	18.2.19.2 wRadioButtonLT
	18.2.19.3 wRadioSet..endwRadioSet
	18.2.19.3.1 wRadioSetButton
	18.2.19.3.2 wRadioSetButtonLT

	18.2.20 wRectangle
	18.2.21 wRoundRect
	18.2.22 wScrollBar
	18.2.23 wTextEdit
	18.2.24 wTrackBar
	18.2.25 wUpDown
	18.2.26 wUpDownEditBox
	18.2.27 wTimer
	18.2.28 wWindow..endwWindow

	18.3 The HOWL Run-time Library
	18.3.1 Private Data Fields
	18.3.2 Abstract Classes
	18.3.2.1 wBase_t
	18.3.2.2 wVisual_t
	18.3.2.3 wClickable_t
	18.3.2.4 wButton_t
	18.3.2.5 wCheckable_t
	18.3.2.6 wSurface_t
	18.3.2.7 wFilledFrame_t
	18.3.2.8 wabsEditBox_t
	18.3.2.9 wContainer_t

	18.3.3 Containers
	18.3.3.1 Forms and Menus
	18.3.3.1.1 wForm_t
	18.3.3.1.2 wMenu_t
	18.3.3.1.3 wMenuItem_t

	18.3.3.2 Tabbed Forms
	18.3.3.2.1 wTabs_t

	18.3.3.3 wGroupBox_t

	18.3.4 Graphic Objects
	18.3.4.1 wBitmap_t
	18.3.4.2 wEllipse_t
	18.3.4.3 wPie_t
	18.3.4.4 wPolygon_t
	18.3.4.5 wRectangle_t
	18.3.4.6 wRoundRect_t

	18.3.5 Buttons
	18.3.6 wCheckBox_t
	18.3.7 wCheckBox3_t
	18.3.8 wCheckBox3LT_t
	18.3.9 wCheckBoxLT_t
	18.3.10 wPushButton_t
	18.3.11 wRadioButton_t
	18.3.12 wRadioButtonLT_t
	18.3.13 wRadioSet_t
	18.3.13.1 wRadioSetButton_t
	18.3.13.2 wRadioSetButtonLT_t

	18.3.14 Editors and Edit Boxes
	18.3.14.1 wEditBox_t
	18.3.14.2 wPasswdBox_t
	18.3.14.3 wTextEdit_t

	18.3.15 List, Drag, and Combo Boxes
	18.3.15.1 wListBox_t
	18.3.15.2 wDragListBox_t
	18.3.15.3 wComboBox_t

	18.3.16 Progress Bars
	18.3.16.1 wProgressBar_t

	18.3.17 Scroll Bars and Track Bars
	18.3.17.1 wScrollBar_t
	18.3.17.2 wTrackBar_t

	18.3.18 Up/Down Arrows
	18.3.18.1 wUpDown_t
	18.3.18.2 wUpDownEditBox_t

	18.3.19 Icons
	18.3.19.1 wIcon_t

	18.3.20 Text
	18.3.20.1 wFont_t
	18.3.20.2 wLabel_t

	18.3.21 Views, Windows, and Tab Pages
	18.3.21.1 wTabPage_t
	18.3.21.2 wView_t
	18.3.21.3 window_t

	18.3.22 Timers
	18.3.22.1 wTimer_t

