Software Requirements Specification
Ethernet Watchdog Board
Table of Contents
41
Introduction

41.1
Revision History

41.2
System Purpose

41.3
Scope

41.4
Intended Audience

41.5
Definitions, Acronyms and Abbreviations

41.5.1
Definitions

51.5.2
Acronyms and Abbreviations

51.6
Existing Solutions

61.7
Overview/Contents of the Document

61.8
Document Conventions

72
General System Description

72.1
Design Basis

72.2
System Context

72.3
System Regulatory Issues

72.4
User Characteristics

83
Software Requirements

83.1
Ethernet Watchdog Board (EWB) Software Requirements

83.1.1
Teensy 3.2

83.1.2
Teensy 3.2 Relay 0 Control

83.1.3
Teensy 3.2 Relay 1 Control

83.1.4
Teensy 3.2 Relay 2 Control

83.1.5
Teensy 3.2 Relay 3 Control

83.1.6
Teensy 3.2 Relay 4 Control

83.1.7
Teensy 3.2 Relay 5 Control

83.1.8
Teensy 3.2 Relay 6 Control

83.1.9
Teensy 3.2 Relay 7 Control

83.1.10
Teensy 3.2 Relay 0 Data Direction

83.1.11
Teensy 3.2 Relay 1 Data Direction

93.1.12
Teensy 3.2 Relay 2 Data Direction

93.1.13
Teensy 3.2 Relay 3 Data Direction

93.1.14
Teensy 3.2 Relay 4 Data Direction

93.1.15
Teensy 3.2 Relay 5 Data Direction

93.1.16
Teensy 3.2 Relay 6 Data Direction

93.1.17
Teensy 3.2 Relay 7 Data Direction

93.1.18
Teensy 3.2 Relay 0 Initialization

93.1.19
Teensy 3.2 Relay 1 Initialization

93.1.20
Teensy 3.2 Relay 2 Initialization

93.1.21
Teensy 3.2 Relay 3 Initialization

93.1.22
Teensy 3.2 Relay 4 Initialization

103.1.23
Teensy 3.2 Relay 5 Initialization

103.1.24
Teensy 3.2 Relay 6 Initialization

103.1.25
Teensy 3.2 Relay 7 Initialization

103.1.26
Teensy 3.2 Watchdog Reset Control

103.1.27
Teensy 3.2 Watchdog Reset Direction

103.1.28
Teensy 3.2 Watchdog Refresh Control

103.1.29
Teensy 3.2 Watchdog Refresh Direction

103.1.30
Teensy 3.2 Watchdog State

103.1.31
Teensy 3.2 Watchdog State Direction

103.1.32
Teensy 3.2 Watchdog Heartbeat LED Control

113.1.33
Teensy 3.2 Watchdog Heartbeat Direction

113.1.34
Number of Relays

113.1.35
Number of Channels

113.1.36
Channel Timer Variables

113.1.37
Channel Timer Variables

113.1.38
Hardware Watchdog Reset Pulse

113.1.39
Hardware Watchdog Reset Length

113.1.40
Hardware Watchdog Refresh Pulse

113.1.41
Channel Watchdog Period

113.1.42
Banked Channel Logic

113.1.43
Relay Control, No Watchdog Timeout Condition

123.1.44
Relay Control, Watchdog Timeout Condition

123.1.45
Ethernet Port MAC Address

123.1.46
Ethernet IP Address

123.1.47
Number of Ethernet Ports

123.1.48
Ethernet Port Number, Channel 1

123.1.49
Ethernet Port Number, Channel 2

123.1.50
Channel 1 Timer Reset

123.1.51
Channel 2 Timer Reset

123.1.52
Hardware Watchdog Reset on Boot

123.1.53
Hardware Watchdog Refresh On Reset

133.1.54
Hardware Watchdog Reset on Timeout

133.1.55
Hardware Watchdog Timeout Test

133.1.56
Hardware Watchdog Reset Loop

133.1.57
Relay Check Period

133.1.58
Heartbeat LED Frequency

133.1.59
Timeout Refresh, Channel 1

133.1.60
Timeout on Channel 1

133.1.61
Timeout Refresh, Channel 2

133.1.62
Timeout on Channel 2

1 Introduction
This document is the Software Requirements Specification for the Ethernet Watchdog Board. The EWB was originally designed for use at INL/NRAD; however, the general nature of this product encourage the release of the EWB as an open hardware/open software device. This document describes the system requirements for that project.
1.1 Revision History

	Revision
	Date
	Author
	Description

	V1.0
	03/17/2019
	Randall Hyde
	Adapted from the INL/NRAD SRS.

1.2 System Purpose

This document includes the software requirements for the EWB project.

This document covers the software requirements for:

· Ethernet WD: Ethernet-based watchdog board.

1.3 Scope
The EWB software will be produced from this specification.

The objectives of the software development are to provide functions, status information, monitor and control hardware, communications, internal and self-test functions per the requirements that have been allocated to the EWB system.

1.4 Intended Audience

The intended audience of this specification is the engineering, product assurance and management personnel involved in EWB software development and for development of the Software Design Description (SDD), Software Test Cases (STC), and Software Test Procedure (STP) documents.

1.5 Definitions, Acronyms and Abbreviations

1.5.1 Definitions

The definitions used herein are consistent with IEEE 610.12-1990 with the following clarifications:

	Accuracy
	The degree of agreement with the true value of the measured input, expressed as percent of reading for digital readouts. (ANSI N42.18-1980)

	Anomaly
	Anything observed in the documentation or operation of software that deviates from expectations. [Derived from IEEE Std 610.12-1990]

	Catastrophic event
	A catastrophic event is an event without warning from which recovery is impossible. Catastrophic events include hardware or software failures resulting in computation and processing errors The processor will halt or reset, based on a configuration item, after a catastrophic event.

	Channel
	The features and capabilities associated with a detector, a sensor, or a calculated group of information.

	CPU
	Central Processing Unit; specifically, a microcomputer chip.

	Failsafe Condition
	Failsafe condition is an actuated state of the TRIGA System as the result of a catastrophic failure such as loss of power, break of circuit or device failure catastrophic event

	Handled Conditions
	Conditions that the system is designed to handle and continue processing. These conditions include anomalies, faults and failures.

	Hardware Requirements Specification
	A specification that documents the hardware requirements (HRS)

	Power Failure
	Power failure is the condition when AC power is outside required limits or logic power is below a low limit.

	Precision (per ANSI N42.18-80)
	The degree of agreement of repeated measurements of the same input, expressed as percent deviation from the mean reading at 95% confidence level.

	SBC
	Single-board computer

	Software Requirements Specification (SRS)
	Documentation of the essential requirements (functions, performance, design constraints, and attributes) of the software and its external interfaces. [IEEE Std 610.12-1990]

	System Requirements Specification (SyRS)
	A structured collection of information that embodies the requirements of the system. [IEEE Std 1233-1998] A specification that documents the requirements to establish a design basis and the conceptual design for a system or subsystem. [GA-ESI]

	
	

1.5.2 Acronyms and Abbreviations

The abbreviations listed have the following meanings where used in this specification:

	AC
	Alternating Current

	ANSI
	American National Standards Institute

	CPU
	Central Processing Unit

	Cpm
	Counts per Minute

	DAQ
	Data Acquisition (System)

	DPDT
	Double-Pole Double-Throw

	FAT
	Factory Acceptance Test

	IEEE
	Institute of Electrical and Electronic Engineers

	LED
	Light-Emitting Diode

	MTBF
	Mean Time between Failures

	NEMA
	National Electrical Manufacturers Association

	NRC
	Nuclear Regulatory Commission

	RAM
	Radiation Area Monitor

	Rms
	Root Mean Square

	SyRS
	System Requirements Specification

	Vac
	Voltage Alternating Current

	Vdc
	Voltage Direct Current

	WDT
	Watchdog Timer

1.6 Existing Solutions

There are various Ethernet-based watchdog timers out there; they were rejected for the the original EWB design because of a lack of failsafe operation, complexity in use and program, and/or a proprietary/closed source design that could not be verified for safety-based operation (e.g., at a nuclear reactor).
1.7 Overview/Contents of the Document
Section 2 contains the general description of the EWB software.
The general description including product perspective, product functions, user characteristics and general constraints is included in this section.
Section 3 contains the specific requirements for the EWB software.

The specific requirements including external interface requirements, system features, performance requirements, and other requirements are included in this section.
Section 4 contains other requirements or design goals

These are items that are not directly hardware or software related (that is, that derived from software design elements).

1.8 Document Conventions

All system requirement tags shall take the form:

<whitespace>
[EWB_SDD_xxx]

<whitespace>
[EWB _SDD_xxx.zz]

<whitespace>
[EWB_SRS_xxx.zz.aa]

etc.

where "xxx" is a three-digit SDD tag number.

For SDD tags, should the need arise to insert a new SDD tag between two other values (e.g., add a item between EWB_SRS_030 and NRAD_SDD_031) then a decimal fractional number shall be appended to the SRS tag number (e.g., EWB_SRS_030.5). Any number of decimal point suffixes can be added, if needed (e.g., EWB_SRS_030.05.02).

2 General System Description

2.1 Design Basis

The design basis for the Ethernet Watchdog Board (or just "EWB") is to provide a system that can be verified to be correct as per regulatory requirements (e.g., DOE/INL/NRAD requirements).

2.2 System Context

For the purposes of this SRS, the General System Description is for only the EWB
2.3 System Regulatory Issues
The EWB has been designed with modern hardware and software engineering principles in mind, with an eye towards achieving approval from appropriate governmental regulatory agencies – specifically NRAD, the DOE, and the NRC.

2.4 User Characteristics
In general, there are three types of individuals who use the System: end users, technicians, and system engineers.
· System engineers are those who design the EWB and are responsible for testing and verifying the proper operation of the EWB.

· Technicians are those who are responsible for maintaining and calibrating the EWB after it is installed.

· End users are those who use the EWB in whatever environment it has been installed.
There is no requirement that these three types of people all be different. The system engineer could also be responsible for on-going maintenance and calibration and could also be a reactor operator (end user).

3 Software Requirements
3.1 Ethernet Watchdog Board (EWB) Software Requirements

3.1.1 Teensy 3.2
1: [EWB_SRS_1001_000]

The CPU module shall be a Teensy 3.2 microcontroller.

3.1.2 Teensy 3.2 Relay 0 Control

2: [EWB_SRS_1001_001]

The software shall associate (Arduino/Teensy 3.2) pin 24 with Relay 0 control.

3.1.3 Teensy 3.2 Relay 1 Control

3: [EWB_SRS_1001_002]

The software shall associate (Arduino/Teensy 3.2) pin 25 with Relay 1 control.

3.1.4 Teensy 3.2 Relay 2 Control

4: [EWB_SRS_1001_003]

The software shall associate (Arduino/Teensy 3.2) pin 26 with Relay 2 control.

3.1.5 Teensy 3.2 Relay 3 Control

5: [EWB_SRS_1001_004]

The software shall associate (Arduino/Teensy 3.2) pin 27 with Relay 3 control.

3.1.6 Teensy 3.2 Relay 4 Control

6: [EWB_SRS_1001_005]

The software shall associate (Arduino/Teensy 3.2) pin 28 with Relay 4 control.

3.1.7 Teensy 3.2 Relay 5 Control

7: [EWB_SRS_1001_006]

The software shall associate (Arduino/Teensy 3.2) pin 29 with Relay 5 control.

3.1.8 Teensy 3.2 Relay 6 Control

8: [EWB_SRS_1001_007]

The software shall associate (Arduino/Teensy 3.2) pin 30 with Relay 6 control.

3.1.9 Teensy 3.2 Relay 7 Control

9: [EWB_SRS_1001_008]

The software shall associate (Arduino/Teensy 3.2) pin 31 with Relay 7 control.

3.1.10 Teensy 3.2 Relay 0 Data Direction

10: [EWB_SRS_1001_009]

The software shall program (Arduino/Teensy 3.2) pin 24 as an output bit.

3.1.11 Teensy 3.2 Relay 1 Data Direction

11: [EWB_SRS_1001_010]

The software shall associate (Arduino/Teensy 3.2) pin 25 as an output bit.

3.1.12 Teensy 3.2 Relay 2 Data Direction

12: [EWB_SRS_1001_011]

The software shall program (Arduino/Teensy 3.2) pin 26 as an output bit.

3.1.13 Teensy 3.2 Relay 3 Data Direction

13: [EWB_SRS_1001_012]

The software shall program (Arduino/Teensy 3.2) pin 27 as an output bit.

3.1.14 Teensy 3.2 Relay 4 Data Direction

14: [EWB_SRS_1001_013]

The software shall program (Arduino/Teensy 3.2) pin 28 as an output bit.

3.1.15 Teensy 3.2 Relay 5 Data Direction

15: [EWB_SRS_1001_014]

The software shall program (Arduino/Teensy 3.2) pin 29 as an output bit.

3.1.16 Teensy 3.2 Relay 6 Data Direction

16: [EWB_SRS_1001_015]

The software shall program (Arduino/Teensy 3.2) pin 30 as an output bit.

3.1.17 Teensy 3.2 Relay 7 Data Direction

17: [EWB_SRS_1001_016]

The software shall program (Arduino/Teensy 3.2) pin 31 as an output bit.

3.1.18 Teensy 3.2 Relay 0 Initialization

18: [EWB_SRS_1001_017]

The software shall initialize (Arduino/Teensy 3.2) pin 24 with zero (fail-safe/open) after system reset.

3.1.19 Teensy 3.2 Relay 1 Initialization

19: [EWB_SRS_1001_018]

The software shall initialize (Arduino/Teensy 3.2) pin 25 with zero (fail-safe/open) after system reset.

3.1.20 Teensy 3.2 Relay 2 Initialization

20: [EWB_SRS_1001_019]

The software shall initialize (Arduino/Teensy 3.2) pin 26 with zero (fail-safe/open) after system reset.

3.1.21 Teensy 3.2 Relay 3 Initialization

21: [EWB_SRS_1001_020]

The software shall initialize (Arduino/Teensy 3.2) pin 27 with zero (fail-safe/open) after system reset.

3.1.22 Teensy 3.2 Relay 4 Initialization

22: [EWB_SRS_1001_021]

The software shall initialize (Arduino/Teensy 3.2) pin 28 with zero (fail-safe/open) after system reset.

3.1.23 Teensy 3.2 Relay 5 Initialization

23: [EWB_SRS_1001_022]

The software shall initialize (Arduino/Teensy 3.2) pin 29 with zero (fail-safe/open) after system reset.

3.1.24 Teensy 3.2 Relay 6 Initialization

24: [EWB_SRS_1001_023]

The software shall initialize (Arduino/Teensy 3.2) pin 30 with zero (fail-safe/open) after system reset.

3.1.25 Teensy 3.2 Relay 7 Initialization

25: [EWB_SRS_1001_024]

The software shall initialize (Arduino/Teensy 3.2) pin 31 with zero (fail-safe/open) after system reset.

3.1.26 Teensy 3.2 Watchdog Reset Control

26: [EWB_SRS_1001_025]

The software shall associate (Arduino/Teensy 3.2) pin 23 with the TA8038S hardware watchdog reset control.
3.1.27 Teensy 3.2 Watchdog Reset Direction

27: [EWB_SRS_1001_026]

The software shall program (Arduino/Teensy 3.2) pin 23 as an output bit.

3.1.28 Teensy 3.2 Watchdog Refresh Control

28: [EWB_SRS_1001_027]

The software shall associate (Arduino/Teensy 3.2) pin 22 with the TA8038S hardware watchdog refresh control.
3.1.29 Teensy 3.2 Watchdog Refresh Direction

29: [EWB_SRS_1001_028]

The software shall program (Arduino/Teensy 3.2) pin 22 as an output bit.

3.1.30 Teensy 3.2 Watchdog State

30: [EWB_SRS_1001_029]

The software shall associate (Arduino/Teensy 3.2) pin 21 with the TA8038S hardware watchdog state. (0=no watchdog timeout, 1=watchdog timeout).

3.1.31 Teensy 3.2 Watchdog State Direction

31: [EWB_SRS_1001_030]

The software shall program (Arduino/Teensy 3.2) pin 21 as an input bit.

3.1.32 Teensy 3.2 Watchdog Heartbeat LED Control

32: [EWB_SRS_1001_031]

The software shall associate (Arduino/Teensy 3.2) pin 7 with the TA8038S hardware watchdog heartbeat LED.

3.1.33 Teensy 3.2 Watchdog Heartbeat Direction

33: [EWB_SRS_1001_032]

The software shall program (Arduino/Teensy 3.2) pin 7 as an output bit.

3.1.34 Number of Relays

34: [EWB_SRS_1006_000]

The software shall support four relays per channel (SyRS calls for a minimum of three).
3.1.35 Number of Channels

35: [EWB_SRS_1007_000]

The software shall provide at two channels (SyRS calls for at least two channels).

3.1.36 Channel Timer Variables

36: [EWB_SRS_1007_001]

The software shall maintain independent time-out variables for each channel.

3.1.37 Channel Timer Variables

37: [EWB_SRS_1007_002]

The software shall initialize the channel timers with zero upon startup.

3.1.38 Hardware Watchdog Reset Pulse

38: [EWB_SRS_1014_000]

The EWB hardware watchdog reset pulse shall be at least 250ms long (active low).

3.1.39 Hardware Watchdog Reset Length

39: [EWB_SRS_1014_001]

The software shall reset the TA8030S watchdog timer chip by writing a ‘1’ bit for 500 msec, followed by a ‘0’ bit for 500 msec, and finally, a ‘1’ bit (to end the pulse).

3.1.40 Hardware Watchdog Refresh Pulse

40: [EWB_SRS_1014_002]

The software shall send a 1 msec pulse pulse (active high) to the TA8030S chip to refresh it.

3.1.41 Channel Watchdog Period

41: [EWB_SRS_1015_000]

Each watchdog timer channel shall be programmed for a timeout period of 7 seconds (±1 second).

3.1.42 Banked Channel Logic

42: [EWB_SRS_1016_000]

All relays for the same channel shall be programmed with the same logic (that is, all relays for a given channel will be open or closed together, except for the brief period while the relays are switching from one state to another).

3.1.43 Relay Control, No Watchdog Timeout Condition

43: [EWB_SRS_1018_000]

The software shall energize (apply power to) the relay coils while a timeout condition does not occur).

3.1.44 Relay Control, Watchdog Timeout Condition

44: [EWB_SRS_1019_000]

The software shall not energize (remove power from) the relay coils while a timeout condition occurs).

3.1.45 Ethernet Port MAC Address

45: [EWB_SRS_1025_000]

The software shall program the Ethernet interface with a MAC address consisting of the characters { 'P', 'P', 'E', 'W', 'D', 'T' } (ASCII codes for each byte of the six-byte MAC address).

3.1.46 Ethernet IP Address

46: [EWB_SRS_1026_000]

The software shall program the Ethernet interface with the IP address 192.168.2.19.

3.1.47 Number of Ethernet Ports

47: [EWB_SRS_1027_000]

The software shall use a different port number for each channel it supports.

Note: the current EWB supports two channels.

3.1.48 Ethernet Port Number, Channel 1
48: [EWB_SRS_1028_000]

The software shall use 20560 as the Ethernet port number for channel 1.

3.1.49 Ethernet Port Number, Channel 2
49: [EWB_SRS_1029_000]

The software shall use 20561 as the Ethernet port number for channel 2.

3.1.50 Channel 1 Timer Reset

50: [EWB_SRS_1030_000]

The software shall reset the Channel 1 timeout period every time it receives a character on its Ethernet port (20560).

3.1.51 Channel 2 Timer Reset

51: [EWB_SRS_1031_000]

The software shall reset the Channel 2 timeout period every time it receives a character on its Ethernet port (20561).

3.1.52 Hardware Watchdog Reset on Boot

52: [EWB_SRS_1032_000]

The software shall reset the EWB hardware watchdog device whenever the system restarts.

3.1.53 Hardware Watchdog Refresh On Reset

53: [EWB_SRS_1032_001]

The software shall send a refresh pulse to the TA8030S watchdog chip upon power-up, after resetting the chip; it will test the watchdog state and repeat sending a refresh pulse until the state indicates that the watchdog timer has reset.

3.1.54 Hardware Watchdog Reset on Timeout

54: [EWB_SRS_1033_000]

The software shall reset the EWB hardware watchdog device whenever it detects that a hardware timeout has occurred.

3.1.55 Hardware Watchdog Timeout Test

55: [EWB_SRS_1033_001]

The software shall test the state of the hardware watchdog timer every ½ second.

3.1.56 Hardware Watchdog Reset Loop

56: [EWB_SRS_1033_002]

When resetting the hardware watchdog, the software shall continuously reset (and refresh) the hardware watchdog timer in a loop as long as it reads a timeout condition from the watchdog latch input (pin 54).

3.1.57 Relay Check Period

57: [EWB_SRS_1034_000]

The software shall check to see if a character has been received from either of the Ethernet ports at least once every ½-second (±250 msec).
3.1.58 Heartbeat LED Frequency

58: [EWB_SRS_1034_001]

The software shall invert the state of the heartbeat LED every ½ seconds.

3.1.59 Timeout Refresh, Channel 1
59: [EWB_SRS_1035_000]

During each iteration of the main loop, the software shall energize all the relays associated with Channel 1 if the timeout period has not elapsed.

3.1.60 Timeout on Channel 1
60: [EWB_SRS_1036_000]

During each iteration of the main loop, the software shall de-energize all the relays associated with Channel 1 if the timeout period has elapsed.

3.1.61 Timeout Refresh, Channel 2
61: [EWB_SRS_1037_000]

During each iteration of the main loop, the software shall energize all the relays associated with Channel 2 if the timeout period has not elapsed.

3.1.62 Timeout on Channel 2
62: [EWB_SRS_1038_000]

During each iteration of the main loop, the software shall de-energize all the relays associated with Channel 2 if the timeout period has elapsed.

	
	Plantation Productions, Inc.
Ethernet Watchdog Board
	EWB-SRS
Page 2

