Software Design Description
Ethernet Watchdog Board
Table of Contents
31
Introduction

31.1
Revision History

31.2
System Purpose

31.3
Scope

31.4
Intended Audience

31.5
Definitions, Acronyms and Abbreviations

31.5.1
Definitions

41.5.2
Acronyms and Abbreviations

41.6
Document Conventions

62
General System Description

62.1
Design Basis

62.2
System Context

62.3
System Regulatory Issues

62.4
User Characteristics

73
Software Design Description

73.1
Ethernet Watchdog Software Design Description

73.1.1
EWB Class viewpoint

123.1.2
EWB Deployment viewpoint

133.1.3
EWB Interaction Viewpoint

1 Introduction
This document is the Software Design Description for the Ethernet Watchdog Board (EWB).

The EWB was originally designed for use at INL/NRAD; however, the general nature of this product encouraged the release of the EWB as an open hardware/open software device. This document describes the system requirements for that project.
1.1 Revision History

	Revision
	Date
	Author
	Description

	V1.0
	09/07/2019
	Randall Hyde
	Adapted this document from the INL/NRAD SDD.

1.2 System Purpose

This document includes the software design documentation (SDD) for the EWB project.

· Ethernet WD: Ethernet-based watchdog board.

1.3 Scope
The EWB software will be produced from this specification.

The objectives of the hardware and software development are to provide functions, status information, monitor and control hardware, communications, internal and self-test functions per the requirements that have been allocated to the EWB system.

1.4 Intended Audience

The intended audience of this specification is the engineering, product assurance and management personnel involved in EWB hardware and software development of the EWB.

1.5 Definitions, Acronyms and Abbreviations

1.5.1 Definitions

The definitions used herein are consistent with IEEE 610.12-1990 with the following clarifications:

	Accuracy
	The degree of agreement with the true value of the measured input, expressed as percent of reading for digital readouts. (ANSI N42.18-1980)

	Anomaly
	Anything observed in the documentation or operation of software that deviates from expectations. [Derived from IEEE Std 610.12-1990]

	Catastrophic event
	A catastrophic event is an event without warning from which recovery is impossible. Catastrophic events include hardware or software failures resulting in computation and processing errors The processor will halt or reset, based on a configuration item, after a catastrophic event.

	Channel
	The features and capabilities associated with a detector, a sensor, or a calculated group of information.

	CPU
	Central Processing Unit; specifically, a microcomputer chip.

	Failsafe Condition
	Failsafe condition is an actuated state of the TRIGA System as the result of a catastrophic failure such as loss of power, break of circuit or device failure catastrophic event

	Handled Conditions
	Conditions that the system is designed to handle and continue processing. These conditions include anomalies, faults and failures.

	Hardware Requirements Specification
	A specification that documents the hardware requirements (HRS)

	Power Failure
	Power failure is the condition when AC power is outside required limits or logic power is below a low limit.

	Precision (per ANSI N42.18-80)
	The degree of agreement of repeated measurements of the same input, expressed as percent deviation from the mean reading at 95% confidence level.

	SBC
	Single-board computer

	Software Requirements Specification (SRS)
	Documentation of the essential requirements (functions, performance, design constraints, and attributes) of the software and its external interfaces. [IEEE Std 610.12-1990]

	System Requirements Specification (SyRS)
	A structured collection of information that embodies the requirements of the system. [IEEE Std 1233-1998] A specification that documents the requirements to establish a design basis and the conceptual design for a system or subsystem. [GA-ESI]

	
	

1.5.2 Acronyms and Abbreviations

The abbreviations listed have the following meanings where used in this specification:

	AC
	Alternating Current

	ANSI
	American National Standards Institute

	CPU
	Central Processing Unit

	Cpm
	Counts per Minute

	DAQ
	Data Acquisition (System)

	DPDT
	Double-Pole Double-Throw

	FAT
	Factory Acceptance Test

	IEEE
	Institute of Electrical and Electronic Engineers

	LED
	Light-Emitting Diode

	MTBF
	Mean Time between Failures

	NEMA
	National Electrical Manufacturers Association

	NRC
	Nuclear Regulatory Commission

	RAM
	Radiation Area Monitor

	Rms
	Root Mean Square

	SyRS
	System Requirements Specification

	Vac
	Voltage Alternating Current

	Vdc
	Voltage Direct Current

	WDT
	Watchdog Timer

1.6 Document Conventions

All system requirement tags shall take the form:

<whitespace>
[EWB_SDD_xxx]

<whitespace>
[EWB_SDD_xxx.zz]

<whitespace>
[EWB_SDD_xxx.zz.aa]

etc.

where "xxx" is a three-digit SDD tag number.

For SDD tags, should the need arise to insert a new SDD tag between two other values (e.g., add a item between EWB_SDD_030 and EWB_SDD_031) then a decimal fractional number shall be appended to the SRS tag number (e.g., EWB_SDD_030.5). Any number of decimal point suffixes can be added, if needed (e.g., EWB_SDD_030.05.02).

2 General System Description

2.1 Design Basis

The design basis for the Ethernet Watchdog Board (or just "EWB") is to provide a system that can be verified to be correct as per regulatory requirements (e.g., DOE/INL/NRAD requirements).

2.2 System Context

For the purposes of this SDD, the General System Description is for only the EWB.

2.3 System Regulatory Issues
The EWB has been designed with modern hardware and software engineering principles in mind, with an eye towards achieving approval from appropriate governmental regulatory agencies – specifically NRC, INL/NRAD, and DOE.

2.4 User Characteristics
In general, there are three types of individuals who use the System: end users, technicians, and system engineers.
· System engineers are those who design the EWB and are responsible for testing and verifying the proper operation of the EWB.

· Technicians are those who are responsible for maintaining and calibrating the EWB after it is installed.

· End users are those who use the EWB in whatever environment it has been installed.
There is no requirement that these three types of people all be different. The system engineer could also be responsible for on-going maintenance and calibration and could also be a reactor operator (end user).

3 Software Design Description
3.1 Ethernet Watchdog Software Design Description
3.1.1 EWB Class viewpoint
[EWB_SDD_1000]

The design of all the data values/objects and functions in the EWB application.

Requirements associated with this viewpoint:

EWB_SRS_1001_000

EWB_SRS_1001_001

EWB_SRS_1001_002

EWB_SRS_1001_003

EWB_SRS_1001_004

EWB_SRS_1001_005

EWB_SRS_1001_006

EWB_SRS_1001_007

EWB_SRS_1001_008

EWB_SRS_1001_009

EWB_SRS_1001_010

EWB_SRS_1001_011

EWB_SRS_1001_012

EWB_SRS_1001_013

EWB_SRS_1001_014

EWB_SRS_1001_015

EWB_SRS_1001_016

EWB_SRS_1001_017

EWB_SRS_1001_018

EWB_SRS_1001_019

EWB_SRS_1001_020

EWB_SRS_1001_021

EWB_SRS_1001_022

EWB_SRS_1001_023

EWB_SRS_1001_024

EWB_SRS_1001_025

EWB_SRS_1001_026

EWB_SRS_1001_027

EWB_SRS_1001_028

EWB_SRS_1001_029

EWB_SRS_1001_030

EWB_SRS_1001_031

EWB_SRS_1001_032
EWB_SRS_1007_001
EWB_SRS_1007_002
3.1.1.1 Arduino Library Object/Operations Class

[image: image1.emf]

+Serial
+EthernetServer
+EthernetClient
+IPaddress
+digitalWrite()
+delay()
+pinMode()
+digitalRead()
+millis()

Arduino Library

Serial is the standard RS-232 port object.

EthernetServer is the Ethernet server object for the Adafruit Ethernet Featherwing adapter (standard Arduino Ethernet code).
 EthernetClient is the Ethernet client object for the Adafruit Ethernet Featherwing adapter (standard Arduino Ethernet code).

IPaddress is the Ethernet IP address object (from the standard Arduino Ethernet code).

The digitalWrite, digitalRead, delay, pinMode, and millis functions are standard Arduino functions.

3.1.1.1.1 Arduino Library Design Overlay

There are no overlays associated with this design element.

3.1.1.1.2 Arduino Library Design Rationale

The Teensy 3.2 MCU module (on the EWB) is programmed using the Arduino IDE, library, and language system. Using the Arduino library makes use of well-tested and documented code reducing development cost and time.

3.1.1.2 Teensy Output Pin Assignments

[image: image2.emf]

+out0 : pin = 24
+out1 : pin = 25
+out2 : pin = 26
+out3 : pin = 27
+out4 : pin = 28
+out5 : pin = 29
+out6 : pin = 30
+out7 : pin = 31
+wd_rfsh : pin = 22
+Reset : pin = 23
+led : pin = 7
+WIZ_CS : pin = 10
+digitalWrite()
+pinMode()

Teensy Output Pins

out0..out7 are the (Teensy) pin numbers corresponding to the output relays on the EWB.

wd_rfsh is the watchdog refresh pin (connected to the TA8030S refresh pin).

Reset is the watchdog reseet pin (connected to the TA8030S reset pin).

led is the heartbeat LED output pin.

WIZ_CS is the chip select line connected to the Adafruit Ethernet Featherwing.

3.1.1.3 Teensy Output Pin Initialization Design Overlay

On startup (in the setup function), initialize all output pins as outputs and write zeros to them.

[image: image3.emf]

Initialize All
Output pins
as outputs

Write 0 to all
output pins

Outputs Initialization

3.1.1.4 Teensy Pin Rationale

The outn pin numbers correspond to the PWM pins (that drive the ULN2803 Darlington array) on the EWB board. The wd_rfrsh, Reset, and led pin numbers were dictated by the design of the EWB board. The WIZ_CS pin number was dictated by the design of the Adafruit Featherwing board.

3.1.1.5 Teensy Input Pin Assignments

[image: image4.emf]

-wd_latch
+digitalRead()
+pinMode()

Teensy Input Pins

wd_latch connects to the output of the watchdog latch (74HC74 flip-flop) on the EWB.

3.1.1.6 Teensy Input Pin Initialization Design Overlay

Initialize the wd_latch pin as an input; toggle the reset (output) line on the TA8030S watchdog chip, toggle the watchdog refresh line, and then repeat this process while the wd_latch pin indicates a timeout condition.

[image: image5.emf]

Initialize
wd_latch as
an input pin

Toggle
Reset
Line

Toggle
Refresh
Line

Inputs Initialization

wd_latch = 1

3.1.1.7 Teensy Input Pin Rationale

The input pin number is dictated by the design of the EWB.

3.1.1.8 Globals Class

[image: image6.emf]

+mac : byte[] = 'PPEWDT'
+ip : IPAddress = 192.168.2.19
+server : EthernetServer
+server2 : EthernetServer
+clearAll()
+watchdogRefresh()
+toggleReset()
+setup()
+loop()

Globals

mac is the Ethernet MAC address supplied to the Adafruit Ethernet Featherwing adapter.

ip is the Ethernet (TCP/) IP address supplied to the Adafruit Ethernet Featherwing adapter.

server is the Ethernet server object for channel 0 on the EWB.

server2 is the Ethernet server object for channel 1 on the EWB.

clearAll() is a function that writes zeros to all the relay controls (puts them in the open/failsafe position).

watchdogRefresh() is a function that sends a watchdog refresh pulse to the TA8030S watchdog chip on the EWB.
toggleReset() is a function that sends a reset pulse to the TA8030S watchdog chip on the EWB.

setup() is the standard Arduino initialization function.

loop() is the standard Arduino main loop function (repeatedly called by the Arduino boot loader).

3.1.1.9 Globals Initialization Design Overlay

[image: image7.emf]

Ethernet.init using
WIZ_CS as chip
select pin

Ethernet.begin
using mac and ip

server.begin

server2.begin

Globals Initialization

3.1.1.10 Globals Rationale

The Globals class encompasses all the global variables and functions appearing in the EWB application.

3.1.1.11 Loop Locals Class

[image: image8.emf]

-lastTime : long unsigned = 0
-timer1 : unsigned long = 0
-timer2 : unsigned long = 0
-curTime : unsigned long
-ledState : byte = 0
-wd1State : byte = 0
-wd2State : byte = 0

Loop Static

lastTime was the result from the Arduino millis function on the previous call to the loop() function.

curTime was the result from the Arduino millis function on the current call to the loop() function.

timer1 is the count of ½-second periods that have occurred on watchdog channel 0 since the last character was received on port 20560.

timer2 is the count of ½-second periods that have occurred on watchdog channel 1 since the last character was received on port 20561.

ledState is the current state (0=off, 1=on) of the heartbeat LED.

wd1State is the current state of the channel 0 watchdog relays (0=timed out/open, 1=not timed out/closed).

wd2State is the current state of the channel 1 watchdog relays (0=timed out/open, 1=not timed out/closed).

3.1.1.12 Loop Locals Rationale

Typical local variables for the loop() function.

3.1.2 EWB Deployment viewpoint
[EWB_SDD_1001]

System organization from the perspective of the software

Requirements associated with this viewpoint:

EWB_SRS_1006_000

EWB_SRS_1007_000
3.1.2.1 EWB Deployment

The EWB Module contains the Teensy 3.2 MCU, the ULN2803 Darlington Array, and the TA8030S watchdog chip. The EWB also contains an Ethernet adapter module for the Teensy 3.2.
The ULN2803 outputs are wired to an 8-relay module with each of the output bits (running through the ULN2803) controlling a single relay. Relays 0..3 are associated with Channel 0 and relays 4..7 are associated with Channel 1.
[image: image9.emf]

Ethernet Watchdog Board

Teensy 3.2

<<component>>

ULN2803

<<component>>

TA8030S

Channel 0 Relays

<<component>>

Relay 0

<<component>>

Relay 1

<<component>>

Relay 2

<<component>>

Relay 3

Channel 1 Relays

<<component>>

Relay 4

<<component>>

Relay 5

<<component>>

Relay 6

<<component>>

Relay 7

<<component>>

Ethernet

Adapter

Ethernet

Out7Out6Out5Out4Out3Out2Out1Out0

wd_rfsh, Reset

Pins

3.1.3 EWB Interaction Viewpoint
[EWB_SDD_1002]

System organization from the perspective of the software

Requirements associated with this viewpoint:

EWB_SRS_1014_000

EWB_SRS_1014_001

EWB_SRS_1014_002

EWB_SRS_1015_000

EWB_SRS_1016_000

EWB_SRS_1018_000

EWB_SRS_1019_000

EWB_SRS_1030_000

EWB_SRS_1031_000

EWB_SRS_1032_000

EWB_SRS_1032_001

EWB_SRS_1033_000

EWB_SRS_1033_001

EWB_SRS_1033_002

EWB_SRS_1034_000

EWB_SRS_1034_001

EWB_SRS_1035_000

EWB_SRS_1036_000

EWB_SRS_1037_000

EWB_SRS_1038_000
3.1.3.1 EWB toggleReset Interaction Diagram
[image: image10.emf]

ResetPin = 1

Delay for
0.5 seconds

ResetPin = 0

Delay for
0.5 seconds

ResetPin = 1

toggleReset

3.1.3.2 EWB watchdogRefresh Interaction Diagram

[image: image11.emf]

wd_rfrsh = 1

Delay for 1
msec

wd_rfrsh = 0

watchdogRefresh

3.1.3.3 EWB testReset Interaction Diagram

[image: image12.emf]

toggleReset

testReset

wd_latch inactive
wd_latch = active?

3.1.3.4 EWB Initialization (setup) Interaction Diagram

[image: image13.emf]

Program all
Output pins
as outputs

Write 0s to
all output

pins

toggleReset

watchdogRefresh

Initialize
Ethernet with IP

Address
192.168.2.19
and MAC

address 'PPEDT'

Initialize
channel 0 server

Initialize
channel 1 server

lastTime = 0
timer0 = 0
timer1 = 0

wdState0 = 0
wdState1 = 0

Initialization (setup)

wd_latch=0?

wd_latch = 1

3.1.3.5 EWB Loop (main body) Interaction Diagram

[image: image14.emf]

Char available

Test Ethernet
socket 20560
(channel 0)

Read
character and

ignore

timer0 = 0

Test Ethernet
socket 20561
(channel 1)

Read
character and

ignore

Read
character and

ignore

timer1 = 1

curTime = millis()

lastTime =
curTime

timer0 = timer0 + 1
timer1 - timer1 + 1

Write ones to
CH 0 relays

wdState0 = 0

Write ones to
CH 1 relays

wdState1 = 0

Write zeros to
CH 0 relays

wdState0 = 1

Write zeros to
CH 1 relays

wdState1 = 1

loop

< 500 ms

No char

timer0 >= timeout

timer0 < timeout (7 sec)

Char available

timer1 >= timeout
timer1 < timeout (7 sec)

curTime-lastTime > 500 ms

Invert Heartbeat LED
testReset

Note: main loop executes faster than once per millisecond.
	
	NRAD
Reactor Console Control System
	NRAD-SDD
Page 3

